#今日论文推荐# WWW 2022 | 无监督图结构学习

#今日论文推荐# WWW 2022 | 无监督图结构学习

近年来,图神经网络(graph neural networks,GNNs)被广泛应用于各种图数据相关的任务当中。然而,图神经网络的学习十分依赖于输入的图结构数据(即图数据中各节点的关联),大大影响了其鲁棒性和普适性。一方面,现实系统中获取的图结构数据难免包含噪声信息,会存在多余边或缺失边的问题;在学习过程中,GNN 很容易受到这些噪声数据的影响,从而导致其性能下降。另一方面,对图结构的依赖也使得 GNN 无法应用于没有显式结构的非结构数据学习,尽管这些数据中可能存在隐性的结构信息。这种对输入结构的依赖,使得 GNN 难以应用于广泛存在于现实世界的非结构数据当中。
为了解决上述问题,现有方法对图结构学习(graph structure learning,GSL)进行研究,该技术旨在利用 GNN 对输入图结构本身进行学习和优化。目前的图结构学习主要遵循有监督范式,即:利用节点分类这一下游任务的标签信息,对图结构和 GNN 进行协同优化。这种范式虽被证明有效,却存在着一些局限性:
1. 依赖于标签信息,在有监督 GSL 方法中,在进行图结构优化时人工标注的标签在扮演了至关重要的角色,然而对标签数据的依赖限制了有监督 GSL 的在更广泛的无标签数据中的应用;
2. 学习到的边分布存在偏差,节点分类通常以半监督的形式进行,只有一小部分节点是有标签的(如在 Cora 数据集有标签节点的比例为 140/2708 ),因此这些标签节点之间的连接及其邻居会接收到更多的监督,从而造成学到的边分布存在不均匀和偏差;
3. 下游任务的局限性,在现有的方法中,结构学习通常依赖节点分类来提供监督信号,因此学习到的图结构通常是任务特定而不是通用的,可能对于下游其他任务没有帮助(如链接预测和节点聚类)。
为了解决上述局限,文中提出了一种新的用于 GSL 的无监督学习范式(unsupervised graph structure learning)。如图 1 所示,该学习范式不依靠任何额外的标签信息,仅根据输入数据本身对图结构进行学习或改进,因此学习到的图结构是通用的无偏的。针对新的学习范式,本文提出了一种基于结构自引导的自监督对比学习方法(StrUcture Bootstrapping Contrastive LearnIng fraMEwork, SUBLIME)。该方法主要有一下三点贡献:
1. 提出了一种新的用于 GSL 的无监督学习范式,相较于其他基于监督学习的 GSL,该范式更具有实践性。
2. 提出了一种新的无监督 GSL 方法——SUBLIME,该方法采用对比学习技术,从原数据本身中获取监督信号来引导结构学习,并同时利用学到的结构信息对监督信息进行更新。
3. 大量实验证明了 SUBLIME 的有效性。

论文题目:Towards Unsupervised Deep Graph Structure Learning
详细解读:https://www.aminer.cn/research_report/62aaa33a7cb68b460fd3b696?download=falseicon-default.png?t=M4ADhttps://www.aminer.cn/research_report/62aaa33a7cb68b460fd3b696?download=false
AMiner链接:https://www.aminer.cn/?f=cs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值