#今日论文推荐# ICML 2022丨FedScale:大规模联邦学习基准系统
近日密西根大学安娜堡分校的SymbioticLab 在ICML 2022上发布了机器学习顶会上第一篇关于联邦学习基准测试的文章。通过提供不同规模、任务类别和客户端系统性能的真实数据集,整合部分主流联邦学习算法的实现(例如 Oort [OSDI'21],HeteroFL[ICLR'21],FedProx[MLSys'20]),支持更具扩展性的评估平台,FedScale(论文/ 代码见文末)解决了目前联邦学习基准系统中难以真实地、大规模地评估算法和系统性能的问题。在发布的大半年里,已有不少顶会论文(如CVPR和MobiCom)采用此基准测试系统。作者丨SymbioticLabFedScale是一个大规模联邦学习基准系统,它提供了海量具有挑战性和真实的数据集,以促进大规模,全⾯的和可重复的联邦学习 (Federated Learning,FL) 落地和研究。其数据集包含广泛的联邦学习任务,例如图像分类、对象检测、单词预测、语⾳识别和视频流中的序列预测。同时,FedScale提供了⼀个高效的系统FedScale Runtime,以实现和标准化联邦学习真实的终端部署(如通过FedScale移动后端)和云端实验评估。其提供的API可以让用户用极少量的代码来实现并在真实数据集上测试自己算法的性能。
论文题目:FedScale: Benchmarking Model and System Performance of Federated Learning
详细解读:https://www.aminer.cn/research_report/62aa9af27cb68b460fd3b0a6?download=falsehttps://www.aminer.cn/research_report/62aa9af27cb68b460fd3b0a6?download=false
AMiner链接:https://www.aminer.cn/?f=cs