#今日论文推荐# ICML 2022丨FedScale:大规模联邦学习基准系统

FedScale是首个在ICML2022发布的联邦学习基准系统,提供大规模、多样化数据集和算法实现,支持真实环境的部署评估。该系统促进了联邦学习在图像分类、对象检测等领域的研究,并已被多个顶会采用作为评估标准。
摘要由CSDN通过智能技术生成

#今日论文推荐# ICML 2022丨FedScale:大规模联邦学习基准系统

近日密西根大学安娜堡分校的SymbioticLab 在ICML 2022上发布了机器学习顶会上第一篇关于联邦学习基准测试的文章。通过提供不同规模、任务类别和客户端系统性能的真实数据集,整合部分主流联邦学习算法的实现(例如 Oort  [OSDI'21],HeteroFL[ICLR'21],FedProx[MLSys'20]),支持更具扩展性的评估平台,FedScale(论文/ 代码见文末)解决了目前联邦学习基准系统中难以真实地、大规模地评估算法和系统性能的问题。在发布的大半年里,已有不少顶会论文(如CVPR和MobiCom)采用此基准测试系统。作者丨SymbioticLabFedScale是一个大规模联邦学习基准系统,它提供了海量具有挑战性和真实的数据集,以促进大规模,全⾯的和可重复的联邦学习 (Federated Learning,FL) 落地和研究。其数据集包含广泛的联邦学习任务,例如图像分类、对象检测、单词预测、语⾳识别和视频流中的序列预测。同时,FedScale提供了⼀个高效的系统FedScale Runtime,以实现和标准化联邦学习真实的终端部署(如通过FedScale移动后端)和云端实验评估。其提供的API可以让用户用极少量的代码来实现并在真实数据集上测试自己算法的性能。

论文题目:FedScale: Benchmarking Model and System Performance of Federated Learning
详细解读:https://www.aminer.cn/research_report/62aa9af27cb68b460fd3b0a6?download=falseicon-default.png?t=M4ADhttps://www.aminer.cn/research_report/62aa9af27cb68b460fd3b0a6?download=false
AMiner链接:https://www.aminer.cn/?f=cs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值