#今日论文推荐# 英伟达用AI设计GPU算术电路,面积比最先进EDA减少25%,速度更快、更加高效
随着摩尔定律的放缓,在相同的技术工艺节点上开发能够提升芯片性能的其他技术变得越来越重要。在这项研究中,英伟达使用深度强化学习方法设计尺寸更小、速度更快和更加高效的算术电路,从而为芯片提供更高的性能。
\大量的算术电路阵列为英伟达 GPU 提供了动力,以实现前所未有的 AI、高性能计算和计算机图形加速。因此,改进这些算术电路的设计对于提升 GPU 性能和效率而言至关重要。
如果 AI 学习设计这些电路会怎么样呢?在近期英伟达的论文《PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning》中,研究者证明了AI不仅可以从头开始设计这些电路,而且AI设计的电路比最先进电子设计自动化(EDA)工具设计的电路更小、更快。
论文题目:PrefixRL: Optimization of Parallel Prefix Circuits using Deep Reinforcement Learning
详细解读:https://www.aminer.cn/research_report/62cd2ea07cb68b460fe92769https://www.aminer.cn/research_report/62cd2ea07cb68b460fe92769
AMiner链接:https://www.aminer.cn/?f=cs