#今日论文推荐#KDD 2022 | GraphMAE:生成式图自监督学习超越对比学习
自监督学习(Self-supervised Learning SSL)在计算机视觉(CV)和自然语言处理(NLP)中得到了广泛的应用。它一般可分为生成性(generative)方法和对比性(contrastive)方法。对比性 SSL 方法在之前两年很火,比如 MoCo,但生成性 SSL 方法也在稳步提升,比如 NLP 中的 BERT 和 GPT,以及最近在 CV 中出现的 MAE。
然而,在图(graph)的自监督学习领域,对比性 SSL 方法一直在占据主流,特别是在两类重要的下游任务上——节点分类(node classification)和图分类(graph classification)。对比性 SSL 方法的成功在图(graph)上的成功主要建立在相对复杂的训练策略上,比如具有动量更新(momentum updates)和指数移动平均(exponential moving average)的双编码器(bi-encoders)。
此外,负样本(negative samples)对大部分对比性学习(contrastive learning)的目标函数(objective)来说是必须的,但构建负样本(negative samples)通常需要付出大量的成本来取样或从图中构建。最后,对比性 SSL 方法严重依赖于数据增强(data augmentation),但数据增强的有效性在不同的图之间有很大的差异,这会导致对比性 SSL 方法性能的不稳定。
自监督图自动编码器(GAE)作为一种生成性 SSL 方法,可以避免在 background 中对比性 SSL 方法中的三个问题,因为它的学习目标(learning objective)是直接重构(reconstruct)输入的图数据。尽管如此,自监督图自动编码器(GAE)的发展一直落后于对比性学习。
到目前为止,还没有一个 GAEs 能超越对比性 SSL 方法的性能,尤其是在节点分类(node classification)和图分类(graph classification)任务上。基于此,这篇文章想要提出一个用于自监督学习的改良版 GAE 模型,使得这个模型的表现可以超过或至少接近于图对比性学习模型。
论文题目:GraphMAE: Self-Supervised Masked Graph Autoencoders
详细解读:https://www.aminer.cn/research_report/62cd22887cb68b460fe91ef2https://www.aminer.cn/research_report/62cd22887cb68b460fe91ef2
AMiner链接:https://www.aminer.cn/?f=cs