#今日论文推荐# ECCV 2022 | 清华等提出CST:首个嵌入光谱稀疏性的Transformer

#今日论文推荐# ECCV 2022 | 清华等提出CST:首个嵌入光谱稀疏性的Transformer

快照压缩成像系统如图1所示。左边为待成像的场景,也即三维光谱型号(空间维度长和宽,通道维度是不同波段的光谱)。它通过预先设计好的光路,首先被编码孔径掩膜进行调制,然后被三棱镜进行散射,在探测器上不同的空间位置进行成像,这些像叠加在一起之后便得到一个二维的快照估计图,如右下角 Measurement 所示。如此一来,原先输入的三维光谱数据(x,y,λ)便被压缩成了二维数据(x,y),从而降低数据存储和传输的负担。

然而压缩估计图并不能直接应用,我们还需要将其复原成高光谱图像才可以进一步分析处理。通常来说,进行高光谱重建的方法可以分为四类:
(1)基于先验模型的传统方法。这一类方法会预先手工设计一些图像先验,如 total variation,low rank property 等。然而这类方法的泛化性差,并且每次使用前需要调整参数,花费大量时间。
(2)端到端的深度学习方法。这类方法直接采用一个深度学习模型,去拟合一个从 2D 快照压缩估计图到 3D 高光谱数据的映射。这类方法目前主要基于卷积神经网络,没有适配光谱表征在空间维度呈现出的稀疏性。并且卷积神经网络在捕获非局部依赖关系(non-local / long-range dependences)上有明显的短板。
(3)迭代式的深度学习方法。这一类方法运用迭代公式,将卷积神经网络嵌入到每一个迭代中作为去噪网络。
(4)即插即用的方法。这类方法将预先训练好的一个深度学习网络插入到每一个迭代始终,无需微调直接应用。
本文主要研究第(2)类方法,主要贡献点可以概括为如下:

  • 提出了一种能将光谱表征嵌入到Transformer的重建方法。名字是 Coarse-to-Fine Sparse Transformer (CST)
  • 提出一种检测密集光谱表征区域的方法,光谱感知筛选机制 ,Spectrum-Aware Screening Mechanism (SASM)
  • 提出一种基于哈希来聚合相关光谱表征的多头自注意机制,Spectra-Aggregation Hashing Multi-head Self-Attention (SAH-MSA)。
  • 在仿真数据集上,我们的 CST 系列模型用了更少的参数量取得了更高的结果。在真实数据上,效果更逼真。

论文题目:Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction
详细解读:https://www.aminer.cn/research_report/62df4fa47cb68b460ff4343aicon-default.png?t=M666https://www.aminer.cn/research_report/62df4fa47cb68b460ff4343a
AMiner链接:https://www.aminer.cn/?f=cs

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值