#今日论文推荐# ECCV 2022 | AirDet:无需微调的小样本目标检测方法
小样本目标检测(FSOD)是近年兴起的一项计算机视觉任务,其基本设定是,仅提供少量(通常少于等于10个)新类样本情况下,方法即需检测基训练集之外类别的目标。
由于其在自主探索中的重要作用,FSOD受到了机器人界越来越多的关注。这是因为我们通常期望机器人在未知环境中检测到(模型训练过程中未见过的)新物体,然而在线探索的过程中,用户只能在线标注提供少量的新类样本。譬如图一(a)中,用户提供少量标注后,方法需要检测钻孔机、头盔等未见过的新颖类别目标。
尽管FSOD最近有了很显著的发展,但是大多数现有的方法在应用前都遵循基训练、小样本微调两阶段范式。然而微调阶段并不适用于机器人在线探索的应用场合,因为:
- 探索过程中待检测的新类别是可以动态变化的(如不断增加的)。如果每次改变类别都重新微调模型,一方面对于时间紧迫的探索任务而言效率极低,另一方面也会为有限的机器人机载算力带来过高负荷。
- 微调阶段的许多超参数都需要验证集进行调节,如微调学习率、模型收敛epoch等。然而对于在线探索任务而言,验证集是不存在的,超参调节自然也就难以进行。
为此,我们提出了一种无需微调的小样本目标检测方法AirDet。如图一(b)所示,未经微调的AirDet甚至能取得比一些微调后的方法更好的结果。
论文题目:AirDet: Few-Shot Detection without Fine-tuning for Autonomous Exploration
详细解读:https://www.aminer.cn/research_report/62e38c357cb68b460ff6bfdfhttps://www.aminer.cn/research_report/62e38c357cb68b460ff6bfdf
AMiner链接:https://www.aminer.cn/?f=cs