#今日论文推荐# 深度学习图像分割揭示了鹦鹉紫外反射率演变的模式
紫外线着色被认为是许多鸟类信号的一种重要形式,但目前缺乏关于紫外线羽毛着色的普遍性和促进其进化的因素的广泛见解。
谢菲尔德大学(The University of Sheffield)的研究人员开发了一种基于深度学习的图像分割管线,该管线大大优于传统经典分割方法,并使用它从超过 24,000 个博物馆标本的照片中提取有关全身羽毛颜色的准确信息,这些标本涵盖超过 4500 种雀形目鸟类。
研究结果表明,紫外线反射率,特别是作为其他颜色的组成部分,在雀形目辐射中广泛存在,但在系统发育上是高度保守的。研究人员还发现了明确的证据支持光环境在促进紫外线羽毛颜色的演变中的作用,以及在具有紫外线而不是对紫色敏感的视觉系统的鸟类中,紫外线羽毛反射率更高的弱趋势。
总体而言,该研究为鸟类颜色的一个神秘组成部分提供了重要的广泛见解,并证明深度学习在允许新数据用于解决生态和进化中长期存在的问题方面具有相当大的前景。
该研究以「Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds」为题,于 2022 年 8 月 29 日发布在《Nature Communications》。
论文题目:Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds
详细解读:https://www.aminer.cn/research_report/6310b7f27cb68b460f117d85https://www.aminer.cn/research_report/6310b7f27cb68b460f117d85
AMiner链接:https://www.aminer.cn/?f=cs