YOLO v1 → YOLO v2 → YOLO v3
YOLOv2借鉴SSD的思路对YOLOv1进行了一系列改进,更像是SSD的升级版
引入了anchor box的概念,有参考,学习到的目标框更加准确,且一个栅格可以识别多个物体。还对其进行了改进
对anchor box的选取采用k均值聚类,而非像Faster RCNN里人工选择
目标框定位方法的改进,对于定位坐标,Fasster RCNN学习的是相对于anchor box的偏移参数,由于没有限制,中心点可以是图像的任意点,而YOLO v2学习的是相对于某个栅格的偏移参数,中心.
原创
2022-02-08 11:30:31 ·
140 阅读 ·
0 评论