pyspark分布式预测本地训练的深度模型

#!/usr/bin/env python
# coding: utf-8

# In[1]:


from pyspark.conf import SparkConf
from pyspark.sql import SparkSession
from pyspark.sql import Row
from pyspark.sql.functions import lit
from pyspark.sql import functions as F
from pyspark.ml.evaluation import MulticlassClassificationEvaluator, BinaryClassificationEvaluator
from pyspark import SparkFiles

import lightgbm as lgb
import xgboost as xgb
import pandas as pd
import numpy as np
import gc
import matplotlib.pyplot as plt
import joblib
import datetime
import dateutil.relativedelta
import pickle
import cloudpickle
from tqdm import tqdm
import sys

from sklearn.metrics import precision_recall_curve, average_precision_score, roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn_pandas import DataFrameMapper
from sklearn2pmml import PMMLPipeline
from sklearn.preprocessing import FunctionTransformer
from sklearn.ensemble import RandomForestClassifier

# from imblearn.over_sampling import SMOTE, SVMSMOTE, ADASYN, BorderlineSMOTE, SMOTENC, SMOTEN, KMeansSMOTE
from sklearn.datasets import make_classification
from tqdm import tqdm

from sklearn.metrics import log_loss, roc_auc_score
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler, QuantileTransformer, LabelEncoder, OrdinalEncoder

from deepctr.layers import custom_objects
from deepctr.models import *
from deepctr.feature_column import SparseFeat, DenseFeat,get_feature_names, build_input_features

import tensorflow as tf
from tensorflow.python.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.python.keras.models import save_model, load_model
from tensorflow.keras.optimizers import Adam, RMSprop
import random

# 启动spark会话
spark = SparkSession \
    .builder \
    .config("spark.executor.memory", "45g") \
    .config("spark.dynamicAllocation.maxExecutors", "200") \
    .config("spark.executor.cores", "6") \
    .appName("qcptj") \
    .enableHiveSupport() \
    .getOrCreate()
sc = spark.sparkContext.setLogLevel('Error')

# 计算分区值
lm2ld = datetime.date.today() - datetime.timedelta(1)
par_dt = str(lm2ld).replace('-', '')
par_dt='20231130'
print('par_dt:', par_dt)

# 直接通过hive加载预测训练数据
dfspark_train = spark.sql("select * from table1 where dt='" + par_dt + "'")
# print(dfspark_train.count())


dfspark_test  = spark.sql("select * from table2 where dt='" + par_dt + "'")
# print(dfspark_test.count())

id_types_spk_train = pickle.load(open('../data/id_types_spk_test.pkl', 'rb'))
id_types_spk_test = pickle.load(open('../data/id_types_spk_test.pkl', 'rb'))

nums_types_spk_train = pickle.load(op
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值