💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
高效实施基于集群化电压控制的重要前提就是合理的分布式能源集群划分,现有的分布式能源集群常常根据地域界限、网络拓扑等形成,不同的集群内电压调节常常对其他集群的节点电压影响较大,或是集群内部电压调节效率较低,大大减小了电压调节的效率。
因此,合理的分布式能源集群划分,使集群内部耦合紧密,集群间耦合较松,实现集群间近似解耦,具有较大的实际意义。
集群划分的最初目的是基于某一特征,将相似的个体划分至同一集群,将不同的个体的划分至不同集群。本文中集群划分的目标是电压控制,基于电压对功率变化的灵敏程度,使对互相灵敏度较高的划分至同一集群,将互相灵敏度较弱的分至不同集群,从而使得电压调节策略能够在集群内部有效实施,而对集群外部的影响较小。由第 3 章分析,分布式能源网络中的有功、无功对节点电压都有影响,且显然不同节点间的电压影响各不相同,初步考虑利用某节点注入功率变化对其它节点影响程度大小来定义电气距离。基于上述分析,采用节点电压对其余各节点注入功率变化的灵敏度[17]来定义节点之间电气距离。由 3.4.1 中的式(3-18)~(3-20)可以求出各节点间的电压-有功灵敏度矩阵和节点间的电压-无功灵敏度矩阵SQ。
灵敏度系数越大,节点注入功率变化对电压变化影响越大,即节点间电气距离越近,因此,记:
但是,由于在实际配电网络中,并不只是节点间两两互联,使得两节点距离不止和自身节点有关,还与周围其它节点的相关。而且一般情况下,两个节点之间有且仅有一个电气距离值,即满足:
结合上述分析,基于电压调节的集群划分方式流程如图所示。
一、引言
高效的电压调节策略对于电力系统的稳定运行至关重要。传统的电压调节方法往往基于全局控制,但这种方法可能因系统规模庞大、节点众多而显得复杂且效率低下。因此,基于集群划分的电压调节策略应运而生。本文将探讨如何利用Kmeans算法对电力系统进行集群划分,以实现更高效的电压调节。
二、Kmeans算法原理
Kmeans算法是一种常用的无监督学习算法,用于将数据点划分为K个不同的簇。每个簇由一个簇中心(质心)表示,簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。算法的主要步骤如下:
- 初始化簇中心:随机选择K个数据点作为初始簇中心。
- 分配数据点:将每个数据点分配到距离其最近的簇中心所在的簇。
- 更新簇中心:重新计算每个簇中所有数据点的平均值,并将平均值作为新的簇中心。
- 迭代:重复步骤2和3,直到簇中心不再发生显著变化,或者达到最大迭代次数。
三、基于Kmeans的电压调节集群划分
- 数据收集:收集电力系统的节点电压数据,包括电压幅值和相角等。
- 特征选择:选择合适的特征来描述节点之间的相似性,如节点电压值、节点之间的距离、节点之间的线路阻抗等。
- 确定簇数:使用肘部法则、轮廓系数等方法确定最佳的簇数K。
- 训练Kmeans模型:使用准备好的数据和选择的特征,训练Kmeans模型,得到每个节点所属的簇。
- 电压调节:将每个簇作为独立的控制区域,并根据每个簇的电压水平进行独立的电压调节。对于电压偏高的簇,可以采取降低电压的方式,如增加线路阻抗或降低发电机出力;对于电压偏低的簇,可以采取提高电压的方式,如降低线路阻抗或增加发电机出力。
四、研究结果与讨论
- 集群划分效果:通过Kmeans算法,电力系统被划分为多个独立的集群,每个集群内部节点之间的电压相似度较高,而不同集群之间的电压相似度较低。
- 电压调节效率:基于集群划分的电压调节策略显著提高了电压调节的效率。由于每个集群内部节点之间的耦合紧密,而集群间耦合较松,因此电压调节策略能够在集群内部有效实施,而对集群外部的影响较小。
- 优化建议:为了进一步提高电压调节的效率,可以考虑对Kmeans算法进行改进,如使用加权的距离度量、引入约束条件等。此外,还可以结合其他优化算法,如遗传算法、粒子群算法等,对集群划分和电压调节策略进行联合优化。
五、结论
基于Kmeans的电压调节集群划分是一种有效的电压调节策略。通过将电力系统划分为多个独立的集群,并在每个集群内部进行独立的电压调节,可以显著提高电压控制的效率和可靠性。该方法具有广泛的应用前景,可以应用于各种电力系统,如配电系统、输电系统等。
📚2 运行结果
不同集群数对应的SSE指标:
1.0000 5.8595
2.0000 4.2614
3.0000 3.5729
4.0000 3.0732
5.0000 2.8334
6.0000 2.3339
7.0000 2.1661
8.0000 2.1096
9.0000 2.1198
10.0000 2.0740
11.0000 2.0543
12.0000 2.0543
13.0000 2.0543
14.0000 2.0399
15.0000 2.0399
16.0000 2.0399
17.0000 2.0399
18.0000 2.0399
19.0000 2.0399
20.0000 2.0399
21.0000 2.0399
22.0000 2.0399
23.0000 2.0399
24.0000 2.0399
25.0000 2.0399
26.0000 2.0399
27.0000 2.0399
28.0000 2.0399
29.0000 2.0399
30.0000 2.0399
31.0000 2.0399
32.0000 2.0399最终划分结果:
1 1
2 1
3 1
4 1
5 4
6 4
7 4
8 4
9 3
10 3
11 3
12 3
13 3
14 3
15 3
16 3
17 1
18 1
19 5
20 5
21 1
22 1
23 1
24 1
25 4
26 4
27 4
28 2
29 2
30 2
31 2
32 3
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]尉同正,杜红卫,夏栋,韩韬,吴雪琼,徐政.基于改进K-means算法的分布式发电集群划分方法[J/OL].华北电力大学学报(自然科学版):1-9[2023-05-19].http://kns.cnki.net/kcms/detail/13.1212.TM.20230217.1641.004.html
[1]黄秋红,王霄,杨靖,范圆成.基于集群划分的区域短期风电功率预测模型[J].电力科学与工程,2022,38(12):8-17.