智能科技助力教育与控制:从社交机器人到LQI控制器的探索
1. LQI控制器优化算法研究
1.1 优化算法响应分析
在直流电机控制系统中,采用不同的优化算法对LQI控制器进行优化,会得到不同的控制效果。
- 细菌觅食算法(BFO)优化 :通过BFO优化算法对LQI控制器进行优化,可消除超调、稳态误差和振荡,使系统输出能以最优方式跟踪设定点或参考值。如图1所示,该算法能让系统快速稳定,实现精准控制。
- 蚁群算法(ACO)优化 :使用ACO优化算法时,会观察到轻微的稳态误差,这会影响对参考值变化的最优跟踪。尽管如此,它在一定程度上仍能改善系统的响应特性。
1.2 Wilcoxom测试结果
为了比较不同优化算法对LQI控制器的性能,进行了Wilcoxom测试,测试设定置信水平为95%,比较的算法组合包括BFO - GA、ACO - GA和ACO - BFO。具体的比较假设如下:
| 比较组合 | 原假设($H_0$) | 备择假设1($H_{a1}$) | 备择假设2($H_{a2}$) |
| ---- | ---- | ---- | ---- |
| BFO - GA | 由(BFO - GA)优化的两个LQI控制器的ITAE性能指标对于直流电机在设定点变化时的速度控制是最优的。 | BFO优化的LQI控制的性能指标(ITAE)高于GA优化的LQI控制的性能指标(ITAE)。 | BFO优化的LQI控制的性能指标(ITAE)低于GA优化的LQI控制的性能指标(ITAE)。 |
| ACO - GA | 由(ACO -
订阅专栏 解锁全文
53

被折叠的 条评论
为什么被折叠?



