【二路归并算法】

本文详细介绍了二路归并排序算法,这是一种时间复杂度为O(n * log2 n)的高效排序方法。内容包括算法的基本思想,即通过不断两两合并有序序列,最终得到一个完整的有序序列。此外,还探讨了如何在合并多个已排序序列时,通过优化合并顺序,以达到最少比较次数和最多比较次数的情况。并提供了具体的输入输出样例及代码实现。

【二路归并算法】

两路合并排序是时间复杂度为O(n* log2 n)的排序方法。
基本思想:将有n个元素的序列看成是n个长度为1的有序序列,然后两两合并序列,得到 n/2个长度为2或1的有序序列,然后在进行两两合并,直到得到一个长度为n的有序序列。

实现①:

#include<stdio.h>
#define MAXSIZE 5
void Merging(int *list1, int list1Size, int *list2, int list2Size)
{
   
   
    int i, j, k;
    int temp[MAXSIZE];
    i = j = k = 0;
    while (i < list1Size && j < list2Size)
    {
   
   
        if (list1[i] < list2[j])
        {
   
   
            temp[k++] = list1[i++];
        }
        else
        {
   
   
            temp[k++] = list2[j++];
        }
    }

    while (i < list1Size)
    {
   
   
        temp[k++] = list1[i++];
    }

    while (j < list2Size
二路归并算法是一种经典的排序算法,基于分治思想,将一个无序序列分成两个子序列,分别对这两个子序列进行排序,然后将排好序的子序列合并成一个有序序列。以下提供两种不同风格的 C 语言实现代码。 ### 实现一 ```c #include <stdio.h> // 将有序的 sr[i...m]和 sr[m+1...n]归并为有序的 tr[i...n] void merge(int sr[], int tr[], int i, int m, int n) { int j, k; for (j = m + 1, k = i; i <= m && j <= n; ++k) if (sr[i] < sr[j]) tr[k] = sr[i++]; else tr[k] = sr[j++]; while (i <= m) tr[k++] = sr[i++]; while (j <= n) tr[k++] = sr[j++]; } // 将无序的 sr[s...t]归并为有序的 tr1[s...t] void msort(int sr[], int tr1[], int s, int t) { int m; int tr2[100]; if (s == t) tr1[s] = sr[s]; else { m = (s + t) / 2; msort(sr, tr2, s, m); msort(sr, tr2, m + 1, t); merge(tr2, tr1, s, m, t); } } int main() { int x[11] = {0, 1, 34, 56, 23, 40, 90, 78, 60, 100, 30}; int d[11], i; msort(x, d, 1, 10); for (i = 1; i <= 10; i++) printf("%d ", d[i]); return 0; } ``` ### 实现二 ```c #include <stdio.h> #define maxSize 100 // 二路归并排序 void mergeSort(int A[], int low, int high) { void merge(int A[], int low, int mid, int high); if (low < high) { int mid = (low + high) / 2; mergeSort(A, low, mid); mergeSort(A, mid + 1, high); merge(A, low, mid, high); } } // 把 A 中 low 到 mid 和 mid+1 到 high 归并成一段有序的序列 void merge(int A[], int low, int mid, int high) { int temp[maxSize]; int i, j, k; // 下面执行的基本操作次数为两端子序列长度之和 for (k = i = low, j = mid + 1; i <= mid && j <= high; ++k) if (A[i] <= A[j]) temp[k] = A[i++]; else temp[k] = A[j++]; while (i <= mid) { temp[k] = A[i]; ++k; ++i; } while (j <= high) { temp[k] = A[j]; ++j; ++k; } for (i = low; i <= high; ++i) { A[i] = temp[i]; } } int main() { int arr[] = {12, 11, 13, 5, 6, 7}; int n = sizeof(arr) / sizeof(arr[0]); mergeSort(arr, 0, n - 1); for (int i = 0; i < n; i++) printf("%d ", arr[i]); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值