这不是Floyd

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/w_yqts/article/details/74611313

题目描述
当一个有向图给出,我们可以通过著名的Floyd算法方便的求解出其传递闭包。
但如果你给一个图G=(V,E),您能不能给一个的最小的边集合代替原边集,使得新的图与原图各个顶点的传递性不变。

输入
有多组测试数据:
第一行,包含一个整数Num,表示测试数据的个数。(1<=Num<=100)
每组测试数据,第一行一个整数N(1<=N<=200)。
接下来N行N列的一个0,1矩阵,表示相应点对之间的连接关系。第i行第j列,若值为1,则表示有一条从i到j的有向边。否则就没有。

输出
每行输出一个整数。输出至少需要多少条边,就能与原图的传递性一致。

样例输入
4
1
1
2
1 0
0 1
2
1 1
1 1
3
1 1 1
0 1 1
0 0 1
样例输出
0
0
2
2

题解
强连通分量缩点。再利用floyd求出多余的边

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<set>
#include<map>
#define sqr(x) (x)*(x)
#define inf 1000000000
#define ll long long
#define mod 1000000
#define N 1000005
using namespace std;
inline int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x*f;
}
int ans,num,tot,tim,top,len;
int ret[100005],Next[100005],Head[2005],stk[2005],dfn[2005],low[2005];
bool flag_stk[2005],flag[2005],ff[2005];
int c[2005],f[2005],sum[2005],l[10000],r[10000],p[205][205],a[205][205];
void ins(int u,int v){ret[++tot]=v;Next[tot]=Head[u];Head[u]=tot;}
void tarjan(int u)
{
    tim++;flag_stk[u]=1;
    dfn[u]=low[u]=tim;
    stk[++top]=u;
    for (int i=Head[u];i;i=Next[i])
    {
        int v=ret[i];
        if (dfn[v]==0)
        {
            tarjan(v);
            low[u]=min(low[u],low[v]); 
        }
        else if (flag_stk[v]) low[u]=min(low[u],dfn[v]);
    }
    if (dfn[u]==low[u])
    {
        num=num+1;sum[num]=1;f[num]=num;bool flag=0;int s=0;
        while (stk[top]!=u)
        {
            flag_stk[stk[top]]=0;
            c[stk[top]]=num;flag=1;
            top--;s++;
        }
        flag_stk[stk[top]]=0;
        c[stk[top]]=num;
        top--;s++;ans+=s;if (!flag) ans--;
    }
}
void solve()
{
        for(int i=1;i<=n;i++) 
        for(int j=1;j<=n;j++) 
        if(a[i][j]==1&&c[i]!=c[j])
        {
            len++;
            l[len]=c[i];
            r[len]=c[j];
            p[c[i]][c[j]]++;
        }
        ans+=len;
        for(int k=1;k<=num;k++) 
            for(int i=1;i<=num;i++) 
                for(int j=1;j<=num;j++)
                    if(p[i][k]>0&&p[k][j]>0) p[i][j]=p[i][j]+p[i][k]*p[k][j];
        for(int i=1;i<=len;i++) 
        {
            p[l[i]][r[i]]--;
            if(p[l[i]][r[i]]==0) p[l[i]][r[i]]++;
            else ans--;
        }
}
int main()
{
    int T=read();
    while (T--)
    {
        memset(p,0,sizeof(p));
        int n=read();len=tim=tot=ans=num=0;
        for (int i=1;i<=n;i++) Head[i]=0;
        for (int i=1;i<=n;i++)
        {
            low[i]=dfn[i]=0;
            for (int j=1;j<=n;j++)
            {
                a[i][j]=read();
                if (a[i][j]) ins(i,j);
            }
        }
        for (int i=1;i<=n;i++)
        {
            flag[i]=0;
            if (dfn[i]==0) tarjan(i);
        }
        solve();
        printf("%d\n",ans);
    }
    return 0;
}
阅读更多
换一批

没有更多推荐了,返回首页