卡里里穆罕默德沐寒墨的博客

且看花开花芬去,独沐雨至雨歇时

Win10 build 1809 intellij idea 无法识别新装字体的问题。

win10 全新安装 1809版本,会带有一个新的特性。默认安装字体是只给当前用户安装的。而intellij idea 2018.3 版本 无法良好适配这一特性,获取系统字体的时候,会看不到新安装的字体。当然,如果把字体放在启动JRE环境的 lib/font 下面可以发现字体,但是渲染效果会比使用...

2018-12-13 14:15:49

阅读数 944

评论数 1

通过MapperScannerConfigurer配置Mybatis的一点研究

今天通过MapperScannerConfigurer来自动扫描存放Mapper接口的包来自动获得Mapper在Spring中的注册,顺带研究了一下Mybatis是如何实现不在接口上面加注解也能识别的到接口的,同时探究了注册进入Spring的Mapper映射器和***Mapper.xml是如何进行...

2016-12-06 18:44:01

阅读数 2182

评论数 0

IntellJ 打包Jar包出现Jar包签名问题的一种解决办法。

最近一段时间改用了IntelliJ,遇到一个打Jar包的问题。这里的前提是maven项目。 因为要提交hadoop相关jar包去服务器上执行job,所以开发完hadoopMR逻辑之后要把相关 任务类和依赖打包上传。 依赖中有一个bouncyCastle相关的jdk15on,如果用Intellj...

2016-11-27 21:26:08

阅读数 1269

评论数 0

解决WIN10“系统和压缩内存”“ntoskrnl.exe”系统空闲时占用大量CPU

前些天装了WIN10,感觉,一般般,最近发现个怪现象,一旦机器有空闲一会,那个“系统和压缩内存”进程就会占用我20%的CPU不知道干嘛。百度一下,国内都在讨论这个进程对内存的消耗,我机器16G内存不存在这个问题。一开始确实不知道怎么解决,后来,发现一个百度知道的问题。 windows10 nto...

2016-03-09 14:40:21

阅读数 46374

评论数 3

AMD R9 280x tri-x vapor-x OC 刷新BIOS来节能降温

前些日子从某宝买了一块2手的 蓝宝石 R9 280x vapor-x ,三风扇。毕竟toxic太贵了,不敢买。同时我也是一个爱好绿色节能的买超频件不超频的玩家。 但是用了几天,发现个然我恼火的事情,这卡的平时待机功耗略高,温度直接50度,有点发烧啊。虽然这是块入门发烧级卡,但是我不想要它给我烤机...

2016-03-08 18:23:12

阅读数 3331

评论数 1

AWS中国区EC2 G2实例实测(Caffe+CUDA7+cuDNN)

上一贴说了如何配置aws中国区和启动实例。现在就是这么用这些实例去进行数据测试看一下结果了。 第一,在Ec上的服务器是虚拟的,就是说,和我们普通的单机或者普通服务器配置起来不一样。普通电脑几条命令就ok了。AWS上需要多搞一些步骤 配置过程: 官方wiki贴:链接点我 这个wiki写的很好了,...

2015-05-22 15:27:46

阅读数 3777

评论数 0

AWS中国区 EC2 实例配置和运行总结

之前提到要在AWS中国区使用EC2服务,搞了好久终于搞定了。现在就仔细说说里面的过程和坑。 首先,中国区AWS和世界其他区域是不连通的,也就是物理隔离。除非采用一些个别的技术手段,是不能直接获取中国区的服务的中国区账号不是随便开的,要通过申请才能获得,价格比其他地区略便宜一些 配置AW...

2015-05-22 14:08:10

阅读数 8526

评论数 0

Amazon AWS 中国区 G2 服务器 配置运行

之前已经成功实现了 caffe-parallel 的数据并行化配置,并且有了初步的测试结果。 接下来就要去搞搞Amazon的AWS G2 实例了。因为暂时在没有申请购买Gpu设备的情况下,别的组也不外借GPU,自然只能租用了。 国内的云服务商都没有GPU,那只能Amazon了,国外的AWS费用...

2015-05-12 13:25:03

阅读数 3290

评论数 0

caffe-parallel 使用总结(ONLY_CPU)

浪潮的 caffe-parallel 确实实现了数据的并行化,但是使用起来还是和原版的caffe有些出入,毕竟是从一个旧版本fork过去的。对于使用的系统环境和依赖也比原版的多一点要求。下面说说在ubuntu12.04下面怎么搞起来的。 顺便还有cifar10的测试效率

2015-05-07 13:39:45

阅读数 9548

评论数 3

对于Caffe 平行化的一点问题

现在的Caffe官方还在研究平行化的问题(单机多线程,多机多线程),从去年7月份就开始了,但是受制于现有版本的原因,暂时不支持 多机并行。单机的并行也是仅仅在使用了OpenBlas或者Intel MKL 这种有特殊运算的情况下才能实现。 为了解决这个问题,不得不去使用 渣浪渣潮的人搞的 P-Caf...

2015-04-28 16:56:29

阅读数 3369

评论数 0

利用crop剪裁方式训练图片的一些事项

transform_param { mirror: true crop_size: 227 mean_file: "data/ilsvrc12/imagenet_mean.binaryproto" } 上面是 caffeNet的 数据层的定义,看得...

2015-04-07 13:18:18

阅读数 11563

评论数 1

git in linux(1)

git loggit reset --head #commitnumgit reloggit reset --head #commitnum

2015-03-31 19:22:20

阅读数 508

评论数 0

札记,15.3.30

搞了很久了,才刚刚会使用训练的流程,使用自己的数据集,包装起来,进行训练,用训练模型和参数去预测未分类结果. 之后的工作是构建优化的网络和进行图片分类预测结果的信息输出~

2015-03-30 14:50:23

阅读数 479

评论数 0

有关Caffe训练好的模型在Python接口下使用分类不准确的问题解决

之前使用caffe训练了1k个自己的数据,有3个分类,在consol下面训练加验证的结果是85%左右的准确率,还是可以的. 但是问题是,当使用了Python接口,导入caffemodel文件和npy均值文件后,分类结果完全惨不忍睹,全部都偏向第一分类. 经过不懈的google,终于发现了问题所在.

2015-03-30 14:31:35

阅读数 8757

评论数 9

weight decay 权值衰减

原文地址~::点我 在机器学习中,常常会出现overfitting,网络权值越大往往overfitting的程度越高,因此,为了避免出现overfitting,会给误差函数添加一个惩罚项,常用的惩罚项是所有权重的平方乘以一个衰减常量之和。 右边项即用来惩罚大...

2015-03-26 20:03:36

阅读数 12424

评论数 0

查找指定类型文件并再文件尾部加标签后输出到txt文件

make filelist with labels use linux find command

2015-03-26 14:22:11

阅读数 654

评论数 0

Caffe学习特征可视化的一点代码问题.

这几天看官方提供基于iPython notebook的学习手册,提供了一些基于Python代码的调用实例. 这一篇是关于学习特征可视化的.地址如下: http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/filte...

2015-03-24 14:50:11

阅读数 2317

评论数 1

-fPIC问题的解决.

在测试最新版(15.3.23)Caffe时,编译过程中遇到2次  relocation R_X86_64_   32 against `******' can not be used when making a shared object; rec   ompile with -fPIC ...

2015-03-23 20:57:18

阅读数 1009

评论数 0

札记 2 (15.3.23 )

过了好久了,进度很慢,还是自己太懒.. 现在进入Caffe 的使用和学习,绝大部分是C++的代码,还有Python的,所以我决定学习使用Python 去使用 Caffe. 学习资料是 薛开宇的 Caffe学习笔记,还是不错的. 现在可以基本使用Caffe 制作数据和使用网络,并且简单更...

2015-03-23 14:16:54

阅读数 648

评论数 2

Ubuntu 下 Python 最大Unicode编码解决办法

最近用了一下Python,但是装的Ubuntu 14.04下面自带了一个Python 2.7.6,我自己编译安装了一个2.7.9. 自带的在 /usr/lib ,编译的在/use/local/lib . 在使用NumPy时,import 后,出现了问题 ImportError: /usr/...

2015-03-23 14:11:33

阅读数 5249

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭