神经网络-参数拟合

模型训练

原来我们的感觉是这样的
y = f ( x ) y = f(x) y=f(x)
模型训练的细节都是使用梯度下降去进行调节的。

不过这里我们被蒙蔽了一点,至少新手如我:我们是可以直接拟合的

多数的任务我们都是通过模型作为转换器,把基础输入替换到我们的目标空间。也就是间接拟合。

我们的拟合无处不在,间接并非第一步,因为转换器的参数,本身就是直接拟合的。

直接拟合

a ⇒ b a \Rightarrow b ab

import torch
from torch import optim
from torch.nn import functional as F

src = torch.randint(0, 100, (1, 10), dtype=torch.float)
dst = torch.arange(0, 10, dtype=torch.float).unsqueeze(0)
dst.requires_grad = False
iterations = 0
optimizer = optim.Adam([src.requires_grad_()])

while iterations < 100000:
    optimizer.zero_grad()
    loss = F.mse_loss(src, dst)
    loss.backward()
    optimizer.step()
    print(f'iterations : {iterations}, Loss : {loss}')
    iterations += 1

print(src)

在这里插入图片描述

并不是简单计算梯度,而是直接更新了数值。

所以平时见到需要model.parameters()其实都是要进行直接拟合的,使得最终的损失最小。

单次下降

大部分的梯度下降方法都是连续梯度下降,也就是说它能根据每次输出去更新同一份的参数列表。

但是有些梯度下降方法,和LBFGS一样,属于单次的计算,这种时候需要特殊的传递方法。

import torch
from torch import optim
from torch.nn import functional as F

src = torch.randint(0, 100, (1, 10), dtype=torch.float)
dst = torch.arange(0, 10, dtype=torch.float).unsqueeze(0)
dst.requires_grad = False
iterations = [0]
optimizer = optim.LBFGS([src.requires_grad_()])


def f():
    optimizer.zero_grad()
    loss = F.mse_loss(src, dst)
    loss.backward()
    print(f'iterations : {iterations[0]}, Loss : {loss}')
    iterations[0] += 1
    return loss


while iterations[0] < 10:
    optimizer.step(f)

print(src)

在这里插入图片描述

把单元的下降方法写为一个函数,step外层进行更新,传入下降函数即可。

可以看到,虽然不能够连续,但是断崖式的回归,能够极大的减少计算步骤。

风格迁移

大多数模型都是复杂的,因为他们都算作是转换器而非生成器

但是基础的图像风格转移,就是风格图像的直接生成,这个时候,不存在网络的转换。

因此,对于这种直接的生成、拟合,需要采用的就是直接拟合而非模型训练。


把图像作为一个Tensor,和上面的方法一样,不停的依据损失进行拟合,最后得出来的就是目标张量。

而这个张量,刚好就是那个需要的图片。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值