人工智能安全与可信AI
文章平均质量分 97
随着人工智能的快速发展和广泛应用,如何确保人工智能的安全性和可信度成为了一个非常重要的议题。在这个专栏中,我们将深入剖析各种人工智能安全的问题,包括数据泄露、模型欺诈、模型篡改等,并研究防范这些问题的方法。
此外,我们还会探讨如何建立可信任的AI系统。我们将深入讨论AI的可解释性、公平性、透明度
Waldocsdn
自强不息,厚德载物!
展开
-
1_图神经网络GNN基础知识学习
图神经网络GNN理论学习和实践原创 2023-09-17 00:35:34 · 1864 阅读 · 0 评论 -
论文精读 —— Gradient Surgery for Multi-Task Learning
在这篇论文中,作者确定了三种导致不良梯度干扰的多任务优化环境条件,并开发了一种简单而通用的方法,以避免任务梯度之间的这种干扰。作者提出了一种梯度手术形式,将任务的梯度投影到任何其他具有冲突梯度的任务的梯度的法平面上。在一系列具有挑战性的多任务监督和多任务RL问题上,这种方法带来了效率和性能的大幅提升。此外,它与模型无关,并且可以与先前提出的多任务架构结合,以增强性能。原创 2023-09-05 23:56:18 · 2947 阅读 · 0 评论 -
论文精读 —— Invisible Backdoor Attack with Sample-Specific Triggers
最近,后门攻击对深度神经网络(DNNs)的训练过程构成了新的安全威胁。攻击者试图将隐藏的后门注入到DNNs中,使得受攻击的模型在良性样本上表现良好,而一旦攻击者定义的触发器激活隐藏的后门,其预测结果将恶意地被改变。现有的后门攻击通常采用的设定是触发器与样本无关,也就是说,不同的被污染样本中包含相同的触发器,这导致了现有的后门防御能够轻易地减轻攻击。在这项工作中,我们探讨了一种新的攻击范式,其中后门触发器是样本特定的。在我们的攻击中,我们只需要修改某些训练样本中的看不见的扰动。原创 2023-06-08 21:40:20 · 2980 阅读 · 1 评论
分享