欧拉函数

这是维基搬运,直接发链接吧
维基百科——欧拉函数

下面将会出现大量格式错误

欧拉函数
维基百科,自由的百科全书
本文介绍的是小于或等于n的正整数中与n互质的数的数目。关于形式为 {\displaystyle \phi (q)=\prod {k=1}^{\infty }(1-q^{k})} \phi (q)=\prod {{k=1}}^{\infty }(1-q^{k})的函数,请见“欧拉函数 (复变函数)”。

当n为1至1000的整数时 {\displaystyle \varphi (n)} \varphi (n)的值
在数论中,对正整数n,欧拉函数 {\displaystyle \varphi (n)} \varphi (n)是小于或等于n的正整数中与n互质的数的数目。此函数以其首名研究者欧拉命名,它又称为φ函数(由高斯所命名)或是欧拉总计函数[1](totient function,由西尔维斯特所命名)。

例如 {\displaystyle \varphi (8)=4} \varphi (8)=4,因为1,3,5,7均和8互质。

欧拉函数实际上是模n的同余类所构成的乘法群(即环 {\displaystyle \mathbb {Z} /n\mathbb {Z} } {\mathbb {Z}}/n{\mathbb {Z}}的所有单位元组成的乘法群)的阶。这个性质与拉格朗日定理一起构成了欧拉定理的证明。

目录
1 历史:欧拉函数与费马小定理
2 欧拉函数的值
3 性质
4 生成函数
5 欧拉函数的走势
6 其他与欧拉函数有关的等式
7 与欧拉函数有关的不等式
8 参考来源
9 文献来源
历史:欧拉函数与费马小定理
1736年,欧拉证明了费马小定理[2]:

假若 {\displaystyle p} p 为质数, {\displaystyle a} a 为任意正整数,那么 {\displaystyle a^{p}-a} a^{p}-a 可被 {\displaystyle p} p 整除。
然后欧拉予以一般化:

假若 {\displaystyle a} a 与 {\displaystyle n} n 互质,那么 {\displaystyle a^{\varphi (n)}-1} {\displaystyle a^{\varphi (n)}-1} 可被 {\displaystyle n} n 整除。亦即, {\displaystyle a^{\varphi (n)}\equiv 1{\pmod {n}}} a^{{\varphi (n)}}\equiv 1{\pmod n}。
其中 {\displaystyle \varphi (n)} \varphi (n) 即为欧拉总计函数。如果 {\displaystyle n} n 为质数,那么 {\displaystyle \varphi (n)=n-1} {\displaystyle \varphi (n)=n-1},因此,有高斯的版本[3]:

假若 {\displaystyle p} p 为质数, {\displaystyle a} a 与 {\displaystyle p} p 互质( {\displaystyle a} a 不是 {\displaystyle p} p 的倍数),那么 {\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{{p-1}}\equiv 1{\pmod p}。
欧拉函数的值
{\displaystyle \varphi (1)=1} \varphi (1)=1(小于等于1的正整数中唯一和1互质的数就是1本身)。

若n是质数p的k次幂, {\displaystyle \varphi (n)=\varphi (p^{k})=p^{k}-p^{k-1}=(p-1)p^{k-1}} \varphi (n)=\varphi (p^{k})=p^{k}-p^{{k-1}}=(p-1)p^{{k-1}},因为除了p的倍数外,其他数都跟n互质。

欧拉函数是积性函数,即是说若m,n互质, {\displaystyle \varphi (mn)=\varphi (m)\varphi (n)} \varphi (mn)=\varphi (m)\varphi (n)。证明:设A, B, C是跟m, n, mn互质的数的集,据中国剩余定理, {\displaystyle A\times B} A\times B和 {\displaystyle C} C可建立双射(一一对应)的关系。(或者也可以从初等代数角度给出欧拉函数积性的简单证明) 因此 {\displaystyle \varphi (n)} \varphi (n)的值使用算术基本定理便知,

若 {\displaystyle n=p_{1}^{k_{1}}p_{2}^{k_{2}}\cdots p_{r}^{k_{r}}} n=p_{1}^{{k_{1}}}p_{2}^{{k_{2}}}\cdots p_{r}^{{k_{r}}}
则 {\displaystyle \varphi (n)=\prod {i=1}^{r}p{i}^{k_{i}-1}(p_{i}-1)=\prod {p\mid n}p^{\alpha {p}-1}(p-1)=n\prod {p|n}\left(1-{\frac {1}{p}}\right)} \varphi (n)=\prod {{i=1}}^{r}p_{i}^{{k_{i}-1}}(p_{i}-1)=\prod {{p\mid n}}p^{{\alpha {p}-1}}(p-1)=n\prod _{{p|n}}\left(1-{\frac {1}{p}}\right)。
其中 {\displaystyle \alpha {p}} \alpha {p}是使得 {\displaystyle p^{\alpha }} p^{{\alpha }}整除 {\displaystyle n} n的最大整数 {\displaystyle \alpha } \alpha (这里 {\displaystyle \alpha {p{i}}=k_{i}} \alpha {{p{i}}}=k_{i})。

例如 {\displaystyle \varphi (72)=\varphi (2^{3}\times 3^{2})=2^{3-1}(2-1)\times 3^{2-1}(3-1)=2^{2}\times 1\times 3\times 2=24} \varphi (72)=\varphi (2^{3}\times 3^{2})=2^{{3-1}}(2-1)\times 3^{{2-1}}(3-1)=2^{2}\times 1\times 3\times 2=24

性质
n的欧拉函数 {\displaystyle \varphi (n)} \varphi (n) 也是循环群 Cn 的生成元的个数(也是n阶分圆多项式的次数)。Cn 中每个元素都能生成 Cn 的一个子群,即必然是某个子群的生成元。而且按照定义,不同的子群不可能有相同的生成元。此外, Cn 的所有子群都具有 Cd 的形式,其中d整除n(记作d | n)。因此只要考察n的所有因数d,将 Cd 的生成元个数相加,就将得到 Cn 的元素总个数:n。也就是说:

{\displaystyle \sum {d\mid n}\varphi (d)=n} \sum {{d\mid n}}\varphi (d)=n
其中的d为n的正约数。

运用默比乌斯反转公式来“翻转”这个和,就可以得到另一个关于 {\displaystyle \varphi (n)} \varphi (n)的公式:

{\displaystyle \varphi (n)=\sum {d\mid n}d\cdot \mu (n/d)} \varphi (n)=\sum {{d\mid n}}d\cdot \mu (n/d)
其中 μ 是所谓的默比乌斯函数,定义在正整数上。

对任何两个互质的正整数a, m(即 gcd(a,m) = 1), {\displaystyle m\geq 2} m\geq 2,有

{\displaystyle a^{\varphi (m)}\equiv 1{\pmod {m}}} a^{{\varphi (m)}}\equiv 1{\pmod m}
即欧拉定理。

这个定理可以由群论中的拉格朗日定理得出,因为任意与m互质的a都属于环 {\displaystyle \mathbb {Z} /n\mathbb {Z} } {\mathbb {Z}}/n{\mathbb {Z}} 的单位元组成的乘法群 {\displaystyle \mathbb {Z} /n\mathbb {Z} ^{\times }} {\mathbb {Z}}/n{\mathbb {Z}}^{{\times }}

当m是质数p时,此式则为:

{\displaystyle a^{p-1}\equiv 1{\pmod {p}}} a^{{p-1}}\equiv 1{\pmod p}
即费马小定理。

生成函数
以下两个由欧拉函数生成的级数都是来自于上节所给出的性质: {\displaystyle \sum {d|n}\varphi (d)=n} \sum {{d|n}}\varphi (d)=n。

由 {\displaystyle \varphi } \varphi (n)生成的狄利克雷级数是:

{\displaystyle \sum {n=1}^{\infty }{\frac {\varphi (n)}{n^{s}}}={\frac {\zeta (s-1)}{\zeta (s)}}.} \sum {{n=1}}^{\infty }{\frac {\varphi (n)}{n^{s}}}={\frac {\zeta (s-1)}{\zeta (s)}}.
其中ζ(s)是黎曼ζ函数。推导过程如下:

{\displaystyle \zeta (s)\sum {f=1}^{\infty }{\frac {\varphi (f)}{f^{s}}}=\left(\sum {g=1}^{\infty }{\frac {1}{g^{s}}}\right)\left(\sum {f=1}^{\infty }{\frac {\varphi (f)}{f^{s}}}\right)} \zeta (s)\sum {{f=1}}^{\infty }{\frac {\varphi (f)}{f^{s}}}=\left(\sum {{g=1}}^{\infty }{\frac {1}{g^{s}}}\right)\left(\sum {{f=1}}^{\infty }{\frac {\varphi (f)}{f^{s}}}\right)
{\displaystyle .\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum {h=1}^{\infty }\left(\sum {fg=h}1\cdot \varphi (g)\right){\frac {1}{h^{s}}}} .\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum {{h=1}}^{\infty }\left(\sum {{fg=h}}1\cdot \varphi (g)\right){\frac {1}{h^{s}}}
{\displaystyle .\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum {h=1}^{\infty }\left(\sum {fg=h}\varphi (g)\right){\frac {1}{h^{s}}}=\sum {h=1}^{\infty }\left(\sum {d|h}\varphi (d)\right){\frac {1}{h^{s}}}} .\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\sum {{h=1}}^{\infty }\left(\sum {{fg=h}}\varphi (g)\right){\frac {1}{h^{s}}}=\sum {{h=1}}^{\infty }\left(\sum {{d|h}}\varphi (d)\right){\frac {1}{h^{s}}}
使用开始时的等式,就得到: {\displaystyle \sum {h=1}^{\infty }\left(\sum {d|h}\varphi (d)\right){\frac {1}{h^{s}}}=\sum {h=1}^{\infty }{\frac {h}{h^{s}}}} \sum {{h=1}}^{\infty }\left(\sum {{d|h}}\varphi (d)\right){\frac {1}{h^{s}}}=\sum {{h=1}}^{\infty }{\frac {h}{h^{s}}}
于是 {\displaystyle \sum {h=1}^{\infty }{\frac {h}{h^{s}}}=\zeta (s-1)} \sum {{h=1}}^{\infty }{\frac {h}{h^{s}}}=\zeta (s-1)
欧拉函数生成的朗贝级数如下:

{\displaystyle \sum {n=1}^{\infty }{\frac {\varphi (n)q^{n}}{1-q^{n}}}={\frac {q}{(1-q)^{2}}}} \sum {{n=1}}^{{\infty }}{\frac {\varphi (n)q^{n}}{1-q^{n}}}={\frac {q}{(1-q)^{2}}}
其对于满足 |q|<1 的q收敛。

推导如下:

{\displaystyle \sum {n=1}^{\infty }{\frac {\varphi (n)q^{n}}{1-q^{n}}}=\sum {n=1}^{\infty }\varphi (n)\sum {r\geq 1}q^{rn}} \sum {{n=1}}^{{\infty }}{\frac {\varphi (n)q^{n}}{1-q^{n}}}=\sum {{n=1}}^{{\infty }}\varphi (n)\sum {{r\geq 1}}q^{{rn}}
后者等价于:

{\displaystyle \sum {k\geq 1}q^{k}\sum {n|k}\varphi (n)=\sum {k\geq 1}kq^{k}={\frac {q}{(1-q)^{2}}}.} \sum {{k\geq 1}}q^{k}\sum {{n|k}}\varphi (n)=\sum {{k\geq 1}}kq^{k}={\frac {q}{(1-q)^{2}}}.
欧拉函数的走势
随着n变大,估计 {\displaystyle \varphi (n)} \varphi (n) 的值是一件很难的事。当n为质数时, {\displaystyle \varphi (n)=n-1} \varphi (n)=n-1,但有时 {\displaystyle \varphi (n)} \varphi (n)又与n差得很远。

123

显然这个搬运不是很靠谱,建议直接看维基百科
数学真奇妙

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值