FM+FFM
在数据稀疏性普遍存在的实际应用场景中,二次项参数的训练是很困难的。原因是,每个参数 wij的训练需要大量 xi 和 xj 都非零的样本;由于样本数据本来就比较稀疏,满足“xi 和 xj 都非零”的样本将会非常少。训练样本的不足,很容易导致参数wij 不准确,最终将严重影响模型的性能。
如何解决二次项参数的训练问题呢?矩阵分解提供了一种解决思路。model-based的协同过滤中,一个rating矩阵可以分解为user矩阵和item矩阵,每个user和item都可以采用一个隐向量表示。比如在下图中的例子中,我们把每个user表示成一个二维向量,同时把每个item表示成一个二维向量,两个向量的点积就是矩阵中user对item的打分。
具体来说,xhxi 和 xixj 的系数分别为⟨vh,vi⟩和⟨vi,vj⟩,它们之间有共同项 vi。也就是说,所有包含“xi 的非零组合特征”(存在某个 j≠i,使得 xixj≠0)的样本都可以用来学习隐向量 vi,这很大程度上避免了数据稀疏性造成的影响。而在多项式模型中,whi 和 wij 是相互独立的。
FFM:通过引入field的概念,FFM把相同性质的特征归于同一个field。
“Day=26/11/15”、“Day=1/7/14”、“Day=19/2/15”这三个特征都是代表日期的,可以放到同一个field中。同理,商品的末级品类编码生成了550个特征,这550个特征都是说明商品所属的品类,因此它们也可以放到同一个field中。简单来说,同一个categorical特征经过One-Hot编码生成的数值特征都可以放到同一个field,包括用户性别、职业、品类偏好等。在FFM中,每一维特征 xi,针对其它特征的每一种field fj,都会学习一个隐向量 vi,fj。因此,隐向量不仅与特征相关,也与field相关。也就是说,“Day=26/11/15”这个特征与“Country”特征和“Ad_type”特征进行关联的时候使用不同的隐向量,这与“Country”和“Ad_type”的内在差异相符,也是FFM中“field-aware”的由来。
假设样本的 n 个特征属于 f 个field,那么FFM的二次项有 nf个隐向量。而在FM模型中,每一维特征的隐向量只有一个。FM可以看作FFM的特例,是把所有特征都归属到一个field时的FFM模型。根据FFM的field敏感特性,可以导出其模型方程。
其中,fj 是第 j 个特征所属的field。如果隐向量的长度为 k,那么FFM的二次参数有 nfk 个,远多于FM模型的 nk 个。此外,由于隐向量与field相关,FFM二次项并不能够化简,其预测复杂度是 O(kn2)。
为了使用FFM方法,所有的特征必须转换成“field_id:feat_id:value”格式,field_id代表特征所属field的编号,feat_id是特征编号,value是特征的值。数值型的特征比较容易处理,只需分配单独的field编号,如用户评论得分、商品的历史CTR/CVR等。categorical特征需要经过One-Hot编码成数值型,编码产生的所有特征同属于一个field,而特征的值只能是0或1,如用户的性别、年龄段,商品的品类id等。除此之外,还有第三类特征,如用户浏览/购买品类,有多个品类id且用一个数值衡量用户浏览或购买每个品类商品的数量。这类特征按照categorical特征处理,不同的只是特征的值不是0或1,而是代表用户浏览或购买数量的数值。按前述方法得到field_id之后,再对转换后特征顺序编号,得到feat_id,特征的值也可以按照之前的方法获得。
在训练FFM的过程中,有许多小细节值得特别关注。
第一,样本归一化。FFM默认是进行样本数据的归一化,即 pa.norm 为真;若此参数设置为假,很容易造成数据inf溢出,进而引起梯度计算的nan错误。因此,样本层面的数据是推荐进行归一化的。
第二,特征归一化。CTR/CVR模型采用了多种类型的源特征,包括数值型和categorical类型等。但是,categorical类编码后的特征取值只有0或1,较大的数值型特征会造成样本归一化后categorical类生成特征的值非常小,没有区分性。例如,一条用户-商品记录,用户为“男”性,商品的销量是5000个(假设其它特征的值为零),那么归一化后特征“sex=male”(性别为男)的值略小于0.0002,而“volume”(销量)的值近似为1。特征“sex=male”在这个样本中的作用几乎可以忽略不计,这是相当不合理的。因此,将源数值型特征的值归一化到 [0,1] 是非常必要的。
第三,省略零值特征。从FFM模型的表达式(4)可以看出,零值特征对模型完全没有贡献。包含零值特征的一次项和组合项均为零,对于训练模型参数或者目标值预估是没有作用的。因此,可以省去零值特征,提高FFM模型训练和预测的速度,这也是稀疏样本采用FFM的显著优势。