ZJCoj qwb与支教 ( 容斥+二分

探讨了一个数学问题,即如何确定在特定规则下(跳过某些倍数的数)第N名学生报出的数字。该问题通过使用容斥原理和二分查找算法解决,并提供了完整的AC代码实现。

qwb与支教

Description

qwb同时也是是之江学院的志愿者,暑期要前往周边地区支教,为了提高小学生的数学水平。她把小学生排成一排,从左至右从1开始依次往上报数。

玩完一轮后,他发现这个游戏太简单了。于是他选了3个不同的数x,y,z;从1依次往上开始报数,遇到x的倍数、y的倍数或z的倍数就跳过。如果x=2,y=3,z=5;第一名小学生报1,第2名得跳过2、3、4、5、6,报7;第3名得跳过8、9、10,报11。

那么问题来了,请你来计算,第N名学生报的数字是多少?

Input

多组测试数据,处理到文件结束。(测试数据数量<=8000)

每个测试例一行,每行有四个整数x,y,z,N。( 2≤x,y,z≤107,1≤N≤1017)。

Output

Output

对于每个测试例,输出第N名学生所报的数字,每个报数占一行。

Sample Input

2 3 5 2
6 2 4 10000

Sample Output

7
19999

Hint

题解:

比赛时候没有写出来 一言看出来是个容斥 没想到二分
蒟蒻还需要学习一个2333

AC代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL INF = 1e18;
LL gcd(LL a,LL b)
{
    return b==0?a:gcd(b,a%b);
}
LL lcm(LL a, LL b)
{
    LL ans, k;
    ans = a/gcd(a,b); 
    k = INF/ans;         //防止爆LL的方法  
    if(k < b) ans = -1;
    else ans *= b;
    return ans;
}
int main()
{
    LL x, y, z, n;
    LL xy, yz, zx, xyz;
    while(~scanf("%lld%lld%lld%lld",&x,&y,&z,&n)) {
        LL l = 0, r = INF; 
        while(l+1 < r) {
            LL mid = (l+r) / 2;
            LL ans = mid/x+mid/y+mid/z;
            xy = lcm(x,y);
            yz = lcm(y,z);
            zx = lcm(z,x);
            xyz = lcm(xy,z);
            ans -= (mid/xy+mid/yz+mid/zx);
            if(xyz != -1) ans += mid/xyz;
            if(mid-ans >= n) r = mid;
            else l = mid;
        }
        printf("%lld\n",r);
    }       
return 0;
} 
内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计仿真;②学习蒙特卡洛模拟拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
内容概要:本文围绕面向制造业的鲁棒机器学习集成计算流程展开研究,提出了一套基于Python实现的综合性计算框架,旨在应对制造过程中数据不确定性、噪声干扰面向制造业的鲁棒机器学习集成计算流程研究(Python代码实现)及模型泛化能力不足等问题。该流程集成了数据预处理、特征工程、异常检测、模型训练优化、鲁棒性增强及结果可视化等关键环节,结合集成学习方法提升预测精度稳定性,适用于质量控制、设备故障预警、工艺参数优化等典型制造场景。文中通过实际案例验证了所提方法在提升模型鲁棒性和预测性能方面的有效性。; 适合人群:具备Python编程基础和机器学习基础知识,从事智能制造、工业数据分析及相关领域研究的研发人员工程技术人员,尤其适合工作1-3年希望将机器学习应用于实际制造系统的开发者。; 使用场景及目标:①在制造环境中构建抗干扰能力强、稳定性高的预测模型;②实现对生产过程中的关键指标(如产品质量、设备状态)进行精准监控预测;③提升传统制造系统向智能化转型过程中的数据驱动决策能力。; 阅读建议:建议读者结合文中提供的Python代码实例,逐步复现整个计算流程,并针对自身业务场景进行数据适配模型调优,重点关注鲁棒性设计集成策略的应用,以充分发挥该框架在复杂工业环境下的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值