# C - Base -2 Number

Time Limit: 2 sec / Memory Limit: 1024 MB

Score : 300300 points

### Problem Statement

Given an integer NN, find the base −2−2 representation of NN.

Here, SS is the base −2−2 representation of NN when the following are all satisfied:

• SS is a string consisting of 0 and 1.
• Unless S=S= 0, the initial character of SS is 1.
• Let S=SkSk−1...S0S=SkSk−1...S0, then S0×(−2)0+S1×(−2)1+...+Sk×(−2)k=NS0×(−2)0+S1×(−2)1+...+Sk×(−2)k=N.

It can be proved that, for any integer MM, the base −2−2 representation of MM is uniquely determined.

### Constraints

• Every value in input is integer.
• −109≤N≤109−109≤N≤109

### Input

Input is given from Standard Input in the following format:N

### Output

Print the base −2 representation of N.

### Sample Input 1 Copy

Copy

-9


### Sample Output 1 Copy

Copy

1011


As (−2)0+(−2)1+(−2)3=1+(−2)+(−8)=−9(−2)0+(−2)1+(−2)3=1+(−2)+(−8)=−9, 1011 is the base −2 representation of −9.

### Sample Input 2 Copy

Copy

123456789


### Sample Output 2 Copy

Copy

11000101011001101110100010101


### Sample Input 3 Copy

Copy

0


### Sample Output 3 Copy

Copy

0


## 题意

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e6+10;
int a[maxn];
int main(int argc, char const *argv[])
{
int n;
cin>>n;
if(n==1||n==0)
{
cout<<n<<endl;
return 0;
}
int k=0;
while(n)
{
int m=n;
a[k++]=abs(n)%2;
n/=-2;
if(m<0&&abs(m)%2)
n++;
}
for(int i=k-1;i>=0;i--)
cout<<a[i];
cout<<endl;
return 0;
}