一篇文章让你了解
Hadoop
集群以及网络
作者:
Brad Hedlund
译者:
Alvin Ge
这篇文章将会逐步介绍
Hadoop
集群的实现原理以及
Hadoop
集群的拓扑结构。并让大
家通过拓扑图的形式直观的了解
Hadoop
集群是如何搭建、
运行以及各个节点之间如何相互
调用、
每个节点是如何工作以及各个节点的作用是什么。
明白这一点将会对学习
Hadoop
有
很大的帮助。首先,我们开始了解
Hadoop
的基础知识,以及
Hadoop
集群的工作原理。让
我们开始吧。
Hadoop
各服务器的角色图
在
Hadoop
部署中,
有三种服务器角色,
他们分别是客户端、
Masters
节点以及
Slave
节
点。
Master
节点,
Masters
节点又称主节点,主节点负责监控两个核心功能:大数据存储
(
HDFS
)以及数据并行计算(
Map Reduce
)
。其中,
Name Node
负责监控以及协调数据存储
(
HDFS
)
的工作,
Job
Tracker
则负责监督以及协调
Map
Reduce
的并行计算。
而
Slave
节
点则负责具体的工作以及数据存储。
每个
Slave
运行一个
Data
Node
和一个
Task
Tracker
守护进程。这两个守护进程负责与
Master
节点通信。
Task Tracker
守护进程与
Job
Tracker 相互作用,而
Data Node
守护进程则与
Name Node
相互作用。
原文:http://wenku.baidu.com/link?url=B7JrBpiQr28imFmprof_3TXjbM9Hz9BHR_3Yk_07F6cSqieaL-HbHVr7MOGZ1nAXKmsCOoK0tSj5q-PjjAVTLYW7kh0W84dtktJtKBMUb2m&from_mod=download
http://baike.baidu.com/link?url=vFe2tGSMoXNc7K45h57KkAQMcUNL2fJOkXPj3n_Tz-PRvnN24a9faiSsZNjHxBXJlBuXK6EhTAp0yeimu2M4jq