问题描述
假定你正在爬楼梯,需要爬N步到达顶峰。
每次只能爬1步或者2步,计算有多少种方法能爬到顶峰。
示例
- 示例1
Input: n = 2
Output: 2
Explanation: There are two ways to climb to the top.
- 1 step + 1 step
- 2 steps
Input: n = 3
Output: 3
Explanation: There are three ways to climb to the top.
- 1 step + 1 step + 1 step
- 1 step + 2 steps
- 2 steps + 1 step
解决方案描述
分析爬n步(n=1~7)时分别有多少种方法,找到其中的规律。
当n=1时,一共有1种方法。
当n=2时,一共有2种方法。
当n=3时,一共有3种方法。
当n=4时,一共有5种方法。
当n=5时,一共有8种方法。
当n=6时,一共有13种方法。
当n=7时,一共有21种方法。
从上面可以看出,当前步数的方法总数是前两步的方法总数的和。
设定n1=1,n2=2

本文介绍了如何使用动态规划解决爬楼梯问题,给出了C#实现。通过分析爬楼梯的步骤,得出当前步数的方法总数是前两步方法总数的和,并给出不同步数的情况作为例子。
最低0.47元/天 解锁文章
911

被折叠的 条评论
为什么被折叠?



