Pytorch多GPU并行Bug收集(长期):KeyError: Caught KeyError in replica *[device_id] on device *[device_id].

本文深入解析了PyTorch多GPU并行训练中遇到的KeyError问题,详细介绍了如何通过调整batch_size和GPU数量,确保每个GPU在最后一个step都能分到数据,从而解决并行训练的常见问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在单卡训练顺利的前提下,修改为多卡训练,可谓bug多多

今天用pytorch 多GPU并行训练时,在最后一个step的时候报错了,

KeyError: Caught KeyError in replica 5 on device 5.

如图所示

我们可以看到,代码处应该是没有问题的,经过我的计算,利用train的总量/batch_size-->16100/24=670---余20,无法整除,这下有点眉目了。正好出现在最后一个step上。

我这次试验用的是6个GPU跑的试验,使用torch.nn.DataParallel来实现的并行,按照源码的并行逻辑,是会根据num_parallel=batch_size/gpu_nums来决定均匀分配给每块GPU上的样本数量,那么我这里num_parallel=4.

到这里有没有突然发现数字上有了联系。没错,20/4=5。正好最后一个step的时候,前5张GPU把数据分完了,最后一张GPU上没有分到数据。

经过合理计算,修正batch_size和gpu个数,使得最后一个step时每张GPU上都能分到数据。

问题解决完毕。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值