在单卡训练顺利的前提下,修改为多卡训练,可谓bug多多
今天用pytorch 多GPU并行训练时,在最后一个step的时候报错了,
KeyError: Caught KeyError in replica 5 on device 5.
如图所示

我们可以看到,代码处应该是没有问题的,经过我的计算,利用train的总量/batch_size-->16100/24=670---余20,无法整除,这下有点眉目了。正好出现在最后一个step上。
我这次试验用的是6个GPU跑的试验,使用torch.nn.DataParallel来实现的并行,按照源码的并行逻辑,是会根据num_parallel=batch_size/gpu_nums来决定均匀分配给每块GPU上的样本数量,那么我这里num_parallel=4.
到这里有没有突然发现数字上有了联系。没错,20/4=5。正好最后一个step的时候,前5张GPU把数据分完了,最后一张GPU上没有分到数据。
经过合理计算,修正batch_size和gpu个数,使得最后一个step时每张GPU上都能分到数据。
问题解决完毕。
本文深入解析了PyTorch多GPU并行训练中遇到的KeyError问题,详细介绍了如何通过调整batch_size和GPU数量,确保每个GPU在最后一个step都能分到数据,从而解决并行训练的常见问题。
:KeyError: Caught KeyError in replica *device_id on device *device_id.&spm=1001.2101.3001.5002&articleId=108473879&d=1&t=3&u=fe4febbdf6134527aae9003c22f8895c)

被折叠的 条评论
为什么被折叠?



