字节抖音电商NLP算法一面

秋招面试记:算法难题与实战反思
博主分享了初次秋招面试经历,重点回顾了自我介绍、Bert概念、场景问题解答和算法题挑战,强调了准备不足的重要性及刷题必要性。

这是今年秋招第一面,没怎么准备,一直在弄论文,两年前的面试经验都忘了,磕磕巴巴的,算法题也没做出来,唉,还是得刷题啊。来记录一下面试吧,给大家一个参考

1、自我介绍+随便将一个最近做的项目

这个就不赘述了,各自都有,按照自己的说,主要是要把自己做什么,为什么做,效果如何,说清楚,没有怎么准备,所以逻辑也不是很清晰,感觉面试官也没听懂,面试官态度一般般,很快这部分就过去了

2、介绍一下Bert,然后Bert里的残差连接有什么用

第一问很宽泛啊,我简要说了一下结构和一些预训练任务

第二问中这残差连接我说了ResNet中首次提出这个时的思想

3、两个场景题

(1)售卖商品收集回来的反馈和评价信息,如何区分正负向,说一个解决方案

(2)如何从大量未标注的图片库中,按照用户的语义查找出要的照片,说一个解决方案

4、算法题

给定一个二叉树和一个值sum,找出所有从根节点到叶子节点的结点和为sum的路径

### 电商数据集下载及相关资源 在当前的技术环境中,获取与电商相关的数据集可以通过多种方式实现。以下是关于如何找到和下载此类数据集的一些方法和技术细节。 #### 1. **公开可用的数据集** 部分研究者或开发者会将经过清洗后的数据集发布到公共平台上,例如 Kaggle、GitHub 或 Zenodo。然而需要注意的是,由于涉及商业隐私保护,官方渠道通常不会提供未经处理的真实交易数据。如果目标是用于学术研究,则可以选择模拟生成或者寻找授权许可下的样本集合[^1]。 #### 2. **通过爬虫技术自动生成数据集** 对于希望构建专属数据集的研究人员来说,采用自动化手段收集信息是一种常见做法。具体而言,可以依赖 Python 编程语言及其生态系统中的工具包来完成这一过程: - 使用 `requests` 库发起 HTTP 请求访问目标页面; - 结合 BeautifulSoup 解析 HTML 文档提取所需字段; - 配置 Scrapy 框架支持更大规模的并发操作以及更复杂的逻辑控制; 下面展示了一个简单的例子程序片段用来演示基本原理: ```python import requests from bs4 import BeautifulSoup def fetch_product_info(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') products = [] items = soup.find_all('div', class_='product-item') # 假设这是商品列表项的选择器 for item in items: title = item.find('h3').text.strip() price = float(item.find('span', class_='price').text.replace('$','')) product_data = { "title": title, "price": price } products.append(product_data) return products ``` 此脚本仅作为概念验证用途,在实际部署前还需要考虑法律合规性和服务器负载等问题[^2]。 #### 3. **利用大模型增强数据分析能力** 除了单纯依靠传统统计学方法外,现代 AI 技术也为电子商务领域带来了新的可能性。特别是预训练的大语言模型能够在自然语言理解方面发挥重要作用,从而帮助改善客户服务体验、优化推荐系统表现等方面的工作效率。例如,某些第三方服务商已经开始尝试结合 GPT 类似架构打造智能化解决方案服务于各类商家客户群体[^3]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值