三、小白第二课—————关于进制转换以及变量类型

1、定义变量时需要先考虑存储方式(存储什么类型的数据就定义什么样的杯子)

                            小生给大家总结勒一下(需要死记硬背辛苦同志们)

 2、可能有的同志们呢不知道空间大小是哥什么概念 那么下来通俗易懂的介绍一下啊

首先大家买的手机有64G、128G、256G、512G。那么在windos系统下以及 Linux系统下也有内存空间。所以啦你一定要知道:

                 1G=====1024M    1M=====1024KB    1KB=====1024byte(字节)   1Byte=8bit(比特)

3、下面就来和小生探索一下这个进制转换的问题,什么进制呢 就是把满多少进一的一种计数形式。那么小生举个小例子我们就恍然大悟。

数羊1,2,3,4,5,6,7,8,9,10,接下来11到下一个十又变成21再到下一个十变成31......

逢十进一就是十进制,逢八进1就是八进制,逢二进1就是二进制 ,逢十六进1就是十六进制

二进制大家应该都不陌生 只有0和1那么为了避免混淆八进制一般以0标识十六进制以0x为标识

4、******重点要来咯 *********(虽然文字有点枯燥无味但是静心读一下就明白)

首先转换之前现举例子带你们看一看怎么算逢多少进多少 老规矩举一个我们最熟悉的二进制

比如 1开始 加1变为2 ,因为逢2进一 所以变为10(不是十进制中的10而是二进制的2),

再加1变成11,无2不进位,再加1变成12,有2进位所以变为20又因为还有2再进位变成100。

依次类推你会发现 十进制的1对应二进制的1 十进制的2对应二进制的10 十进制的3对应二进制的11,十进制的4对应二进制的100这就是传说中的二进制大哥。

同样的八进制,十六进制按照同样的方法也会得到相应的进制数。

(1)、经过前人的推算就发现十进制,八进制,二进制,十六进制有一个桥可以互相转换。

十进制的  3=3* 10^0      53=3*10^0+5*10^1      253=3*10^0+5*10^1+2*10^2

八进制(以0为标识)  03=3* 8^0     053=3*8^0+5*8^1      0253=3*8^0+5*8^1+2*8^2 

十六进制(以0x为标识)  0x3=3* 16^0    0x53=3*16^0+5*16^1      0x253=3*16^0+5*16^1+2*16^2

相信大家有所理解啦吧!!!!!!!!!

实在不理解就死记硬背吧  给一个任意进制数按照上述的形式展开就可以得到对应的十进制

 再不明白的话那就来几个题看看吧!!!

这里注意哦 对于十六进制而言 小生觉得是科学家们比较懒比较个性所以将10到15用字母来表示了

分别是         10 对应 A        11 对应 B      12 对应 C       13 对应 D      14 对应 E         15 对应 F 

(2)、上面介绍的是其他进制转十进制 那么十进制如何转到其他进制呢?来吧再看看呗! !   

*************利用拆分法先将十进制转为二进制,再通过二进制转为想要的其他进制************

举例:十进制21  前提是你需要牢记 2^0 2^1 2^2 2^3 2^4 2^5....前8个次方的结果,小生帮你们回忆

       2^8=256    2^7=128   2^6=64   2^5=32    2^4=16   2^3=8    2^2=4    2^1=  2^0=1 

十进制21 你看大致再16到32之间直接锁定范围大喊一声21哪里跑!一定再16之前那么 我们就开始将21拆分

拆成1个16  拆成一个4正好剩余1 再拆一个1 加一起正好21  所以将16  4  1 的位置记为1其余为0所以就得出10101  所以10101就是十进制21对应的二进制。

再来一个十进制48转为二进制  大致再32到64之间直接锁定范围大喊一声48哪里跑!将48拆分

拆成1个32拆成一个16你会发现正好加一起就是48 所以将32 16的位置记为1 其余为0 所以就得出110000 所以110000就是十进制48对应的二进制。

(3)、上面介绍的是十进制转二进制二进制如何转到其他进制呢?

                                           来吧、难上难(南山南)  让我再看你一眼从头到尾! !

 有了上面的基础我觉得加上思路可以动手算一算咯 加油 同志们!!!!

 

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论

打赏作者

小凯长头发

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值