Lucene 实战之入门案例

版权声明:分享是一种品质,开源是一种精神。 https://blog.csdn.net/wangmx1993328/article/details/82177447

目录

Lucene 下载

环境准备

新建项目

导入开发包

待检索文件

Lucene 操作

Lucene 创建索引

Lucene 检索索引


本文承接《 Lucene 实战前 核心理论简述》,介绍完 Lucene 理论之后,现在开始真正的进行编码开发。

Lucene 下载

  • 如下所示为下载后的解压的结构,Lucene 不同的功能包放在不同目录,开发中需要使用什么功能就导入什么包即可
  • analysis:分词包,使用 Lucene 都通常会用到分词,因为无论是存储还是搜索,都需要进行分词
  • core :其中为核心包,Lucene 开发必导
  • demo:其中是官方示例,可以用来学习
  • docs :其中是 API 文档
  • queryparser:其中是查询所需的包,检索功能必导
  • ...............

环境准备

  • 为了思路清晰,本文将新建项目
  • 不使用 Maven管理,也不用 Spring Boot 开发,直接使用 Java SE 项目进行学习 Lucene 的 API
  • 本文例子使用 Lucene 7.4、Java JDK 1.8

新建项目

导入开发包

  • commons-io-2.4.jar:本身 Lucene 不依赖它,是为了操作文件方便而导入的 Apache 的一个 Jar 包,使用可以参考《org.apache.commons.io.FileUtils 详解
  • lucene-7.4.0\analysis\common\lucene-analyzers-common-7.4.0.jar:标准分词包
  • lucene-7.4.0\core\lucene-core-7.4.0.jar:lucene 核心包
  • lucene-7.4.0\queryparser\lucene-queryparser-7.4.0.jar:查询解析包

待检索文件

  • 本文示例以下面的 "E:/wmx/searchsource" 目录下的文件进行操作,简要操作流程如下:
  1. 第一步:提取文件需要的部分,比如:文件名,文件内容,文件大小 等等
  2. 第二步:将提取的文件内容添加到 Lucene 索引库中,索引库相当于 Lucene 的数据库
  3. 第三步:从 Lucene 索引库中检索信息
  • Lucene 索引库中存放索引与 Lucene 文档(Document),每一个 Lucene Document 对象对应提取的文件内容,具体含义请查看之后代码中的注释,只有多写才能更好的理解。

Lucene 操作

Lucene 创建索引

package com.lct.wmx.utils;

import org.apache.commons.io.FileUtils;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;

import java.io.File;
import java.io.IOException;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;

/**
 * Created by Administrator on 2018/8/29 0029.
 * Lucene 索引管理工具类
 */
public class IndexManagerUtils {

    /**
     * 为指定目录下的文件创建索引,包括其下的所有子孙目录下的文件
     *
     * @param targetFileDir :需要创建索引的文件目录
     * @param indexSaveDir  :创建好的索引保存目录
     * @throws IOException
     */
    public static void indexCreate(File targetFileDir, File indexSaveDir) throws IOException {
        /** 如果传入的路径不是目录或者目录不存在,则放弃*/
        if (!targetFileDir.isDirectory() || !targetFileDir.exists()) {
            return;
        }

        /** 创建 Lucene 文档列表,用于保存多个 Docuemnt*/
        List<Document> docList = new ArrayList<Document>();

        /**循环目标文件夹,取出文件
         * 然后获取文件的需求内容,添加到 Lucene 文档(Document)中
         * 此例会获取 文件名称、文件内容、文件大小
         * */
        for (File file : targetFileDir.listFiles()) {
            if (file.isDirectory()) {
                /**如果当前是目录,则进行方法回调*/
                indexCreate(file, indexSaveDir);
            } else {
                /**如果当前是文件,则进行创建索引*/
                /** 文件名称:如  abc.txt*/
                String fileName = file.getName();

                /**文件内容:org.apache.commons.io.FileUtils 操作文件更加方便
                 * readFileToString:直接读取整个文本文件内容*/
                String fileContext = FileUtils.readFileToString(file);

                /**文件大小:sizeOf,单位为字节*/
                Long fileSize = FileUtils.sizeOf(file);

                /**Lucene 文档对象(Document),文件系统中的一个文件就是一个 Docuemnt对象
                 * 一个 Lucene Docuemnt 对象可以存放多个 Field(域)
                 *  Lucene Docuemnt 相当于 Mysql 数据库表的一行记录
                 *  Docuemnt 中 Field 相当于 Mysql 数据库表的字段*/
                Document luceneDocument = new Document();

                /**
                 * TextField 继承于 org.apache.lucene.document.Field
                 * TextField(String name, String value, Store store)--文本域
                 *  name:域名,相当于 Mysql 数据库表的字段名
                 *  value:域值,相当于 Mysql 数据库表的字段值
                 *  store:是否存储,yes 表存储,no 为不存储
                 *
                 * TextField:表示文本域、默认会分词、会创建索引、第三个参数 Store.YES 表示会存储
                 * 同理还有 StoredField、StringField、FeatureField、BinaryDocValuesField 等等
                 * 都来自于超级接口:org.apache.lucene.index.IndexableField
                 */
                TextField nameFiled = new TextField("fileName", fileName, Store.YES);
                TextField contextFiled = new TextField("fileContext", fileContext, Store.YES);
                /**如果是 Srore.NO,则不会存储,就意味着后期获取 fileSize 值的时候,值会为null
                 * 虽然 Srore.NO 不会存在域的值,但是 TextField本身会分词、会创建索引
                 * 所以后期仍然可以根据 fileSize 域进行检索:queryParser.parse("fileContext:" + queryWord);
                 * 只是获取 fileSize 存储的值为 null:document.get("fileSize"));
                 * 索引是索引,存储的 fileSize 内容是另一回事
                 * */
                TextField sizeFiled = new TextField("fileSize", fileSize.toString(), Store.YES);

                /**将所有的域都存入 Lucene 文档中*/
                luceneDocument.add(nameFiled);
                luceneDocument.add(contextFiled);
                luceneDocument.add(sizeFiled);

                /**将文档存入文档集合中,之后再同统一进行存储*/
                docList.add(luceneDocument);
            }
        }

        /** 创建分词器
         * StandardAnalyzer:标准分词器,对英文分词效果很好,对中文是单字分词,即一个汉字作为一个词,所以对中文支持不足
         * 市面上有很多好用的中文分词器,如 IKAnalyzer 就是其中一个
         */
        Analyzer analyzer = new StandardAnalyzer();

        /** 指定之后 创建好的 索引和 Lucene 文档存储的目录
         * 如果目录不存在,则会自动创建*/
        Path path = Paths.get(indexSaveDir.toURI());

        /** FSDirectory:表示文件系统目录,即会存储在计算机本地磁盘,继承于
         * org.apache.lucene.store.BaseDirectory
         * 同理还有:org.apache.lucene.store.RAMDirectory:存储在内存中
         */
        Directory directory = FSDirectory.open(path);

        /** 创建 索引写配置对象,传入分词器*/
        IndexWriterConfig config = new IndexWriterConfig(analyzer);

        /**创建 索引写对象,用于正式写入索引和文档数据*/
        IndexWriter indexWriter = new IndexWriter(directory, config);

        /**将 Lucene 文档加入到 写索引 对象中*/
        for (int i = 0; i < docList.size(); i++) {
            indexWriter.addDocument(docList.get(i));
            /**如果目标文档数量较多,可以分批次刷新一下*/
            if ((i + 1) % 50 == 0) {
                indexWriter.flush();
            }
        }
        /**最后再 刷新流,然后提交、关闭流*/
        indexWriter.flush();
        indexWriter.commit();
        indexWriter.close();
    }

    public static void main(String[] args) throws IOException {
        File file1 = new File("E:\\wmx\\searchsource");
        File file2 = new File("E:\\wmx\\luceneIndex");
        indexCreate(file1, file2);
    }
}
  • 程序运行之后,在 Lucene 索引库中就生成好了索引和文档,接着便可以来检索这些内容了,而不需要再从实际文件中进行查询。

Lucene 检索索引

package com.lct.wmx.utils;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.queryparser.classic.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;

import java.io.File;
import java.nio.file.Path;
import java.nio.file.Paths;

/**
 * Created by Administrator on 2018/8/29 0029.
 * Lucene 索引搜索工具类
 */
public class IndexSearchUtils {

    /**
     * 索引查询
     *
     * @param indexDir  :Lucene 索引文件所在目录
     * @param queryWord :检索的内容,默认从文章内容进行查询
     * @throws Exception
     */
    public static void indexSearch(File indexDir, String queryWord) throws Exception {
        if (indexDir == null || queryWord == null || "".equals(queryWord)) {
            return;
        }
        /** 创建分词器
         * 1)创建索引 与 查询索引 所用的分词器必须一致
         */
        Analyzer analyzer = new StandardAnalyzer();

        /**创建查询对象(QueryParser):QueryParser(String f, Analyzer a)
         *  第一个参数:默认搜索域,与创建索引时的域名称必须相同
         *  第二个参数:分词器
         * 默认搜索域作用:
         *  如果搜索语法parse(String query)中指定了域名,则从指定域中搜索
         *  如果搜索语法parse(String query)中只指定了查询关键字,则从默认搜索域中进行搜索
         */
        QueryParser queryParser = new QueryParser("fileName", analyzer);

        /** parse 表示解析查询语法,查询语法为:"域名:搜索的关键字"
         *  parse("fileName:web"):则从fileName域中进行检索 web 字符串
         * 如果为 parse("web"):则从默认搜索域 fileContext 中进行检索
         * 1)查询不区分大小写
         * 2)因为使用的是 StandardAnalyzer(标准分词器),所以对英文效果很好,如果此时检索中文,基本是行不通的
         */
        Query query = queryParser.parse("fileContext:" + queryWord);

        /** 与创建 索引 和 Lucene 文档 时一样,指定 索引和文档 的目录
         * 即指定查询的索引库
         */
        Path path = Paths.get(indexDir.toURI());
        Directory dir = FSDirectory.open(path);

        /*** 创建 索引库读 对象
         * DirectoryReader 继承于org.apache.lucene.index.IndexReader
         * */
        DirectoryReader directoryReader = DirectoryReader.open(dir);

        /** 根据 索引对象创建 索引搜索对象
         **/
        IndexSearcher indexSearcher = new IndexSearcher(directoryReader);

        /**search(Query query, int n) 搜索
         * 第一个参数:查询语句对象
         * 第二个参数:指定查询最多返回多少条数据,此处则表示返回个数最多5条
         */
        TopDocs topdocs = indexSearcher.search(query, 5);

        System.out.println("查询结果总数:::=====" + topdocs.totalHits);

        /**从搜索结果对象中获取结果集
         * 如果没有查询到值,则 ScoreDoc[] 数组大小为 0
         * */
        ScoreDoc[] scoreDocs = topdocs.scoreDocs;

        ScoreDoc loopScoreDoc = null;
        for (int i = 0; i < scoreDocs.length; i++) {

            System.out.println("=======================" + (i + 1) + "=====================================");
            loopScoreDoc = scoreDocs[i];

            /**获取 文档 id 值
             * 这是 Lucene 存储时自动为每个文档分配的值,相当于 Mysql 的主键 id
             * */
            int docID = loopScoreDoc.doc;

            /**通过文档ID从硬盘中读取出对应的文档*/
            Document document = directoryReader.document(docID);

            /**get方法 获取对应域名的值
             * 如域名 key 值不存在,返回 null*/
            System.out.println("doc id:" + docID);
            System.out.println("fileName:" + document.get("fileName"));
            System.out.println("fileSize:" + document.get("fileSize"));
            /**防止内容太多影响阅读,只取前20个字*/
            System.out.println("fileContext:" + document.get("fileContext").substring(0, 20) + "......");
        }
    }

    public static void main(String[] args) throws Exception {
        File indexDir = new File("E:\\wmx\\luceneIndex");
        indexSearch(indexDir, "spring");
    }
}
  • 控制台输出如下:

查询结果总数:::=====4
=======================1=====================================
doc id:2
fileName:spring_README.txt
fileSize:3255
fileContext:## Spring Framework
......
=======================2=====================================
doc id:1
fileName:springmvc.txt
fileSize:2126
fileContext:Spring

2.    Web......
=======================3=====================================
doc id:0
fileName:spring.txt
fileSize:83
fileContext:The Spring Framework......
=======================4=====================================
doc id:4
fileName:1.create web page.txt
fileSize:47
fileContext:Learn how to create ......

Process finished with exit code 0

 

 

 

展开阅读全文

没有更多推荐了,返回首页