原子喷泉中的量子投影噪声:高稳定性铯频率标准

1999年的《物理评论快报》文章详细描述了在量子限制下运行的铯喷泉钟,实现了前所未有的4×10^(-14)t^(-1/2)短期频率稳定性。文章介绍了实验方法,包括使用超稳定低温振荡器测量原子数量,以及量子投影噪声在频率稳定性中的影响。
摘要由CSDN通过智能技术生成

这篇文章的标题是《原子喷泉中的量子投影噪声:高稳定性铯频率标准》,发表于1999年6月的《物理评论快报》杂志上。文章的DOI为10.1103/PhysRevLett.82.4619,被引用了635次,阅读次数为1264次。文章的作者包括Giorgio Santarelli、Pierre Lemonde、A. Clairon、A. G. Mann等,他们分别来自法国国家科学研究中心、法国国家科学研究中心、巴黎天文台、西澳大利亚大学等机构。

文章描述了在量子限制条件下运行的激光冷却铯喷泉钟的工作原理。使用了一个超稳定的低温蓝宝石振荡器来测量喷泉的短期频率稳定性,这是根据检测到的原子数量Nat的变化而变化的。当Nat从4×10^4变化到6×10^5时,频率波动的Allan标准偏差与原子投影噪声的N^(-1/2)定律非常吻合。当有6×10^5个原子时,相对频率稳定性为4×10^(-14)t^(-1/2),其中t是积分时间(秒)。这是迄今为止报道的初级频率标准的最佳短期稳定性,比之前的结果提高了5倍。

在新一代高精度激光冷却原子频率标准中,中性原子喷泉已经存在了十年。在这段时间里,喷泉标准的相对频率稳定性提高了3个数量级:从2×10^(-10)t^(-1/2)降低到2×10^(-13)t^(-1/2),其中t是平均时间(秒)。然而,所有这些实验都受到技术噪声的限制,而不是测量过程中固有的基本量子噪声。1991年,人们认识到,在量子限制条件下的铯喷泉可以达到2×10^(-14)t^(-1/2)的频率稳定性。Itano等人首次研究了使用两能级原子的频率标准中量子测量噪声的影响。

如果一个原子系统被准备在一个线性叠加态|ψ> = a|g> + b|e>中,其中|g>和|e>是两个状态,并且受到一个测量,指示系统是否处于|g>或|e>状态,量子力学预测找到系统处于|g>状态的概率是|a|^2,其中|a|^2 + |b|^2 = 1。除非a或b为0,否则测量的结果不能确定。Itano等人将这种效应称为量子投影噪声,并在重复测量单个粒子的情况下观察到了它,以及在具有Nat个相同被困粒子的集合平均情况下观察到了它,直到Nat约为380。

在像原子喷泉这样的频率标准中,|g>(和/或|e>)的种群被测量为外部询问场的频率的函数,这些信息被用来将标准的输出频率锁定到原子跃迁频率上。如[8]所示,对于Ramsey的分离场方法,如果技术噪声远小于量子投影噪声,并且场幅度是最优的,那么标准的频率波动与|a|^2、|b|^2的选择无关。对于包含Nat个不相关原子的系统,频率波动的标准偏差按照N^(-1/2) at比例缩放。在这封信中,我们展示了使用多达6×10^5个检测到的原子在每个喷泉周期中的冷铯喷泉频率标准在量子投影噪声水平上的运行。通过改变喷泉中的原子数量,我们检查了N^(-1/2) at定律的指数水平为6%。对于Nat约为6×10^5,测量的短期频率稳定性为4×10^(-14)t^(-1/2),其中t是积分时间(秒)。由于喷泉中的原子数量大,达到量子投影噪声区域对应于创纪录的频率稳定性:比我们之前的喷泉结果提高了5倍,比最近的激光冷却Hg^+离子频率标准提高了8倍。据我们所知,这是第一次在量子限制条件下获得原子钟的最佳频率稳定性。通过将铯喷泉与氢原子钟进行比较,对于2×10^4秒的积分时间,测量到了6×10^(-16)的分数频率稳定性,很可能受到原子钟频率稳定性的限制。我们的工作使得在1×10^(-16)的未探索水平上进行频率测量成为现实,因为只需要大约一天的积分时间。这是评估原子钟在这个水平上的系统频率偏移的先决条件。最后,我们提出了一种新方法,通过量子投影噪声来对冷样品中的原子数量进行绝对测量。

在我们的实验中,第一个关键元素是使用一个超低频噪声低温蓝宝石振荡器(SCO)作为喷泉中的询问振荡器。到目前为止,只有石英振荡器被用来在Cs喷泉中产生n0 = 9.192 GHz的询问场。它们的相位噪声严重降低了钟的频率稳定性,增加了一个与Nat无关的额外噪声。SCO拥有一个模式,距离n0只有1.3 MHz。在这个模式上振荡,频率稳定性在0.1到10秒的范围内低于10^(-14)。因此,与我们的原子喷泉中的投影噪声相比,额外的噪声可以忽略不计。这个实验的第二个关键特征是测量铯钟跃迁两个状态的种群的有效方法。激光冷却的原子喷泉以顺序模式运行。首先,10^7到10^8个Cs原子被加载到一个磁光陷阱中。在磁场关闭后,原子以约4 m/s的速度向上发射并冷却到1.6 mK。通过激光和微波脉冲,我们只选择处于|F = 3, mF = 0〉量子态的原子。处于mF = 0的原子被激光束脉冲的辐射压力推开。使用Ramsey询问方案。在上升过程中,原子与微波腔中的9.192 GHz电磁场相互作用,提供了第一个π/2脉冲。在腔上空飞行约500毫秒后,原子第二次通过微波腔,经历第二个π/2脉冲,然后落回到检测区域。因此,Ramsey共振的宽度Δν为1 Hz。通过改变发射速度,这个宽度可以变化620%。通过光诱导荧光测量每个|F = 3, mF = 0〉和|F = 4, mF = 0〉超精细水平的种群,方法如下:首先,原子穿过一个高度为8毫米的探测光束,该光束在镜子上反射并调谐到6S1/2 F = 4, 6P3/2 F0 = 5循环跃迁的半个自然宽度以下。这个光束是s1偏振的,强度为1 mW/cm^2。通过在低噪声光电二极管上检测5毫秒长的荧光脉冲,测量了|F = 4, mF = 0〉的种群,与时间积分的荧光脉冲成比例。收集效率约为0.8%,每个原子检测到150个光子。然后,这些原子被行波的辐射压力推开。这是通过阻挡反射探测光束的最低2毫米来实现的。在第一个荧光脉冲后的4毫秒,处于|F = 3, mF = 0〉状态的原子穿过两个叠加的激光束。第一个激光束与6S1/2 F = 3, 6P3/2 F0 = 4跃迁共振。它迅速将原子泵送到F = 4状态。第二束激光的参数与上面的探测光束相同。在第二个光电二极管上检测到荧光脉冲。因此,在每个喷泉周期中,通过将两个超精细水平中检测到的原子数量相加,确定了总原子数量Nat。

Nat的绝对不确定性约为50%。这取决于探测激光参数和检测区域的几何形状。用于频率稳定的信号是过渡概率p,它是|F = 4, mF = 0〉状态的种群与|F = 3, mF = 0〉和|F = 4, mF = 0〉种群之和的比值。在名义条件下,p约为1/2。使用这种检测方法,p在很大程度上独立于原子数量的射击到射击波动。同样,探测激光强度和频率的波动被很好地抑制,因为我们对两个检测通道使用相同的窄线宽激光器,频率为100 kHz。图1显示了我们设备中的Ramsey共振中心。为了将喷泉的输出信号锁定到超精细跃迁频率,每次发射序列中,微波询问频率在n0 ± Δν/2之间交替,以便p约为1/2。两个连续测量之间的差异被集成以提供输出信号频率的校正。这个伺服的时间常数约为三个喷泉周期。原子喷泉的相对频率波动y_t的Allan标准偏差可以表示为:

sy_t = 1 / (pQ_at * sqrt(1 / (Nat * n_ph) + 1 / (2 * s_d * N) + 1 / (2 * g)))

其中,t是测量时间(秒),T_c是喷泉周期持续时间(约1秒),t . T_c。Q_at = n0 * Δν是原子质量因子。括号中的第一项是原子投影噪声,约为N^(-1/2)。第二项是由于探测荧光脉冲的光子射击

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值