Python爬虫的一些总结

最近写了一些爬虫,总结下遇到过的一些问题.


常用库:

  • 抓取网页: 常用的有requests, urllib.
  • 解析: BeautifulSoup, lxml, re.
  • 框架: scrapy, pyspier.
  • url去重: bloomfilter
  • 图片处理: Pillow
  • OCR: Tesseract,google的一个ocr库。
  • 代理: 代理Tor, PySocks


如何异步爬取?

可以使用grequests库,或者对于简单的爬虫,tornado文档有个demo,稍微改下自己用。
一个简单的异步爬虫类:

import time
from datetime import timedelta
from tornado import httpclient, gen, ioloop, queues


class AsySpider(object):

    def __init__(self, urls, concurrency):
        self.urls = urls
        self.concurrency = concurrency
        self._q = queues.Queue()
        self._fetching = set()
        self._fetched = set()

    def handle_page(self, url, html):
        print(html)

    @gen.coroutine
    def get_page(self, url):
        try:
            response = yield httpclient.AsyncHTTPClient().fetch(url)
            print('######fetched %s' % url)
        except Exception as e:
            print('Exception: %s %s' % (e, url))
            raise gen.Return('')
        raise gen.Return(response.body)

    @gen.coroutine
    def _run(self):

        @gen.coroutine
        def fetch_url():
            current_url = yield self._q.get()
            try:
                if current_url in self._fetching:
                    return

                print('fetching****** %s' % current_url)
                self._fetching.add(current_url)
                html = yield self.get_page(current_url)
                self._fetched.add(current_url)

                self.handle_page(current_url, html)

                for i in range(self.concurrency):
                    if self.urls:
                        yield self._q.put(self.urls.pop())

            finally:
                self._q.task_done()

        @gen.coroutine
        def worker():
            while True:
                yield fetch_url()

        self._q.put(self.urls.pop())

        # Start workers, then wait for the work queue to be empty.
        for _ in range(self.concurrency):
            worker()
        yield self._q.join(timeout=timedelta(seconds=300))
        assert self._fetching == self._fetched

    def run(self):
        io_loop = ioloop.IOLoop.current()
        io_loop.run_sync(self._run)


def main():
    urls = ['http://www.baidu.com'] * 100
    s = AsySpider(urls, 10)
    s.run()

if __name__ == '__main__':
    main()

如何模拟成浏览器?

使用requests库可以很方便的给请求加上header,具体可以参考requests的文档。


如何提交表单?模拟登录

一般是查找html源代码找到form,然后看form提交的地址,就可以直接使用requests的post方法提交数据。
另外requests还有个Session模块,使用起来很方便。
有些网站如果是需要登录的,我们可以直接把登录后自己的cookies复制下来,直接作为requests的cookies参数传进去。


如何模拟成搜索引擎?

     
     
1
2
3
4
5
6
     
     
# 模仿百度蜘蛛
# 模拟成搜索引擎只需要改下header的User-Agent,比如模拟百度爬虫:
headers = {
'User-Agent': 'Mozilla/5.0 (compatible; Baiduspider/2.0; +http://www.baidu.com/search/spider.html)',
}
r = requests. get(url, headers=headers)

其他常见搜索引擎:
360Spider:
Mozilla/5.0+(compatible;+MSIE+9.0;+Windows+NT+6.1;+Trident/5.0);+360Spider

Sogouspider:
Sogou+web+spider/4.0(+http://www.sogou.com/docs/help/webmasters.htm#07)


如何抓取手机app的内容?

手机内容一般通过发送请求使用json等数据格式通信,所以可以使用抓包软件fiddle等来抓取请求,分析请求来源,之后就可以模拟
发送请求抓取数据。抓包也可以使用mitmproxy,一个python开发的强大的代理软件,只需要用命令行启动mitmproxy,之后将手机wifi
代理更改成为电脑的ip和mitmproxy启动时指定的端口号,就可以看到app发送的请求了。接下来要做的就是仔细过滤请求,看看需要的
信息是通过什么请求发送的,我们就可以直接使用requests手工模拟获取数据了。


碰到验证码怎么办?

上边提到过一个OCR库Tesseract, 简单的验证码可以使用这个命令行工具搞定.


遇到动态生成的内容怎么办?

一种方法是打开浏览器的开发者工具,追踪到浏览器发送的请求,然后直接模拟。
还有一种方法是Selenium+PhantomJs库,具体可以参考网上的教程或者附录参考书。

Ref

Web Scraping with Python


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PegasusWang_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值