精度和召回率是衡量信息检索系统性能的重要指标。
精度是指检索到相关文档数占检索到的文档总数的比例。
召回率是指检索到相关文档数占所有相关文档总数的比例。
举例来说明一下
检索到的相关文档数(A)
检索到的不相关文档数(B)
没有检索到的相关文档数(C)
没有检索到的不相关文档数(D)
则精度为A\(A+B)
召回率为A\(A+C)
考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive),如果实例是负类被预测成正类,称之为假正类(False positive)。相应地,如果实例是负类被预测成负类,称之为真负类(True negative),正类被预测成负类则为假负类(false negative)。
如下表所示,1代表正类,0代表负类。
|
预测
| ||||
|
1
|
0
|
合计
| ||
|
实际
|
1
|
True Positive(TP)
|
False Negative(FN)
|
Actual Positive(TP+FN)
|
|
0
|
False Positive(FP)
|
True Negative(TN)
|
Actual Negative(FP+TN)
| |
|
合计
|
Predicted Positive(TP+FP)
|
Predicted Negative(FN+TN)
|
TP+FP+FN+TN
|
从列联表引入两个新名词。其一是真正类率(true positive rate ,TPR), 计算公式为
TPR=TP/ (
TP+
FN),刻画的是
分类器所识别出的 正实例占所有正实例的比例。另外一个是假正类率(false positive rate, FPR),计算公式为
FPR= FP / (FP + TN),计算的是分类器错认为正类的负实例占所有负实例的比例。还有一个真负类率(True Negative Rate,TNR),也称为specificity,计算公式为TNR=
TN/ (
FP+
TN) = 1 -
FPR。
在一个二分类模型中,对于所得到的连续结果,假设已确定一个
阀值,比如说 0.6,大于这个值的实例划归为正类,小于这个值则划到负类中。如果减小阀值,减到0.5,固然能识别出更多的正类,也就是提高了识别出的正例占所有正例的比例,即TPR,但同时也将更多的负实例当作了正实例,即提高了FPR。为了形象化这一变化,在此引入ROC。
Receiver Operating Characteristic,翻译为"接受者操作特性曲线"。曲线由两个变量1-specificity 和 Sensitivity绘制. 1-specificity=FPR,即假正类率。Sensitivity即是真正类率,TPR(True positive rate),反映了正类覆盖程度。这个组合以1-specificity对sensitivity,即是以代价(costs)对收益(benefits)。
下表是一个逻辑回归得到的结果。将得到的实数值按大到小划分成10个个数相同的部分。
|
Percentile
|
实例数
|
正例数
|
1-特异度(%)
|
敏感度(%)
|
|
10
|
6180
|
4879
|
2.73
|
34.64
|
|
20
|
6180
|
2804
|
9.80
|
54.55
|
|
30
|
6180
|
2165
|
18.22
|
69.92
|
|
40
|
6180
|
1506
|
28.01
|
80.62
|
|
50
|
6180
|
987
|
38.90
|
87.62
|
|
60
|
6180
|
529
|
50.74
|
91.38
|
|
70
|
6180
|
365
|
62.93
|
93.97
|
|
80
|
6180
|
294
|
75.26
|
96.06
|
|
90
|
6180
|
297
|
87.59
|
98.17
|
|
100
|
6177
|
258
|
100.00
|
100.00
|
其正例数为此部分里实际的正类数。也就是说,将逻辑回归得到的结 果按从大到小排列,倘若以前10%的数值作为
阀值,即将前10%的实例都划归为正类,6180个。其中,正确的个数为4879个,占所有正类的 4879/14084*100%=34.64%,即敏感度;另外,有6180-4879=1301个负实例被错划为正类,占所有负类的1301 /47713*100%=2.73%,即1-特异度。以这两组值分别作为x值和y值,在excel中作散点图。得到ROC曲线如下

5074

被折叠的 条评论
为什么被折叠?



