Contrastive Loss
主要用于处理成对的数据
公式
L ( W , Y , X ⃗ 1 , X ⃗ 2 ) = ( 1 − Y ) 1 2 ( D W ) 2 + ( Y ) 1 2 { max ( 0 , m − D W ) } 2 L\left(W, Y, \vec{X}_{1}, \vec{X}_{2}\right)=(1-Y) \frac{1}{2}\left(D_{W}\right)^{2}+(Y) \frac{1}{2}\left\{\max \left(0, m-D_{W}\right)\right\}^{2} L(W,Y,X1,X2)=(1−Y)21(DW)2+(Y)21{ max(0,m−DW)}2
说明
D w D_w Dw 是数据对特征的欧式距离; Y Y Y 用于表示是否同类,同类表示为0, 不同类表示为1; m m m 我理解为是一个阈值
含义理解
当数据对同类的时候, Y Y Y 为0,公式变为 L ( W , Y , X ⃗ 1 , X ⃗ 2 ) = 1 2 ( D W ) 2 L\left(W, Y, \vec{X}_{1}, \vec{X}_{2}\right)=\frac{1}{2}\left(D_{W}\right)^{2} L(W,Y,X1,X2)=21(DW)2, 这是想让同类之间的距离尽量小
当数据对不同类的时候, Y Y Y 为1,公式变为 L ( W , Y , X ⃗ 1 ,
最低0.47元/天 解锁文章
584

被折叠的 条评论
为什么被折叠?



