多元组损失整理(二元组损失、三元组损失、四元组损失)

参考链接

Contrastive Loss

来源

主要用于处理成对的数据

公式

L ( W , Y , X ⃗ 1 , X ⃗ 2 ) = ( 1 − Y ) 1 2 ( D W ) 2 + ( Y ) 1 2 { max ⁡ ( 0 , m − D W ) } 2 L\left(W, Y, \vec{X}_{1}, \vec{X}_{2}\right)=(1-Y) \frac{1}{2}\left(D_{W}\right)^{2}+(Y) \frac{1}{2}\left\{\max \left(0, m-D_{W}\right)\right\}^{2} L(W,Y,X 1,X 2)=(1Y)21(DW)2+(Y)21{ max(0,mDW)}2

说明

D w D_w Dw 是数据对特征的欧式距离; Y Y Y 用于表示是否同类,同类表示为0, 不同类表示为1 m m m 我理解为是一个阈值

含义理解

当数据对同类的时候, Y Y Y 为0,公式变为 L ( W , Y , X ⃗ 1 , X ⃗ 2 ) = 1 2 ( D W ) 2 L\left(W, Y, \vec{X}_{1}, \vec{X}_{2}\right)=\frac{1}{2}\left(D_{W}\right)^{2} L(W,Y,X 1,X 2)=21(DW)2, 这是想让同类之间的距离尽量小

当数据对不同类的时候, Y Y Y 为1,公式变为 L ( W , Y , X ⃗ 1 ,

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值