背景
在实际开发中发现,通过预测认为 Express 编写的异步框架是基于协程的调度,因为脑补中的协程调度的颗粒度精确到一次请求,也即一次性请求处理完毕后,协程才会切换到另外一个请求,这种想法是幼稚的,原因就是没有彻底理解基于协程编程的概念。
转换思维之后,也即任何一个地方都可以创建一个 Promise,然后使用协程调度逻辑,那么就意味着在整个 web 开发过程中,无论是请求的处理,还是数据库的处理,还是其他各种逻辑的处理,都可以做成异步的,并用 Promise 进行封装,然后等待执行结果的返回。
在上述这种情况下,只要有 I/O 存在,且使用的是异步非阻塞式编码,那么就会出现并发现象。这里 GPT 的回答非常的透彻
GPT 的回答
这是一个非常好的问题,涉及到并发的不同层次以及数据库的工作机制。我们来详细讨论一下为什么在单线程事件循环的 Node.js 环境中,仍然可能出现数据库写锁问题。
1. Node.js 的单线程事件循环模型
Node.js 的单线程事件循环模型并不意味着整个系统的所有操作都在同一时间只能执行一个。实际上,Node.js 通过非阻塞 I/O 和事件循环来高效处理并发请求。当执行 I/O 操作(例如数据库操作)时,Node.js 会将该操作委派给底层系统(如数据库服务器或文件系统)进行处理,而不会阻塞主线程。
-
异步 I/O 调用:当 Node.js 发起一个数据库请求时,它会异步地发送请求,并立即返回到事件循环处理其他任务。当数据库操作完成时,Node.js 会通过回调、Promise 或
async/await来处理结果。
2. 数据库的并发机制
数据库系统(如 MySQL、PostgreSQL、MongoDB 等)通常是多线程的,并且有自己的并发控制机制,与 Node.js 的单线程事件循环模型不同。即使 Node.js 在单线程中运行并发请求,这些请求在发送到数据库时,数据库会在其内部以多线程或多进程方式处理它们。
-
数据库的事务和锁:数据库为了保证数据一致性和完整性,通常使用事务和锁机制来控制并发操作。特别是在写操作时,数据库可能会对某些数据行或整个表施加写锁,以确保多个事务不会同时修改相同的数据,从而导致数据不一致。
3. 为什么会出现写锁问题?
写锁问题通常出现在多用户同时对同一资源(如数据表或行)进行修改时。虽然 Node.js 是单线程的,但由于它可以同时发起多个异步请求,这些请求最终会到达数据库,而数据库是多线程并行处理的,这就引入了并发写的问题。
具体原因包括:
-
并发的数据库操作:虽然在 Node.js 中,单个事件循环在同一时间只能处理一个请求的逻辑,但如果有多个客户端同时发送请求,这些请求会在事件循环中被快速调度,并几乎同时被发往数据库。数据库在接收到这些请求后,会并行处理它们。
-
数据库的锁机制:当多个并发的写请求尝试修改同一条数据或同一张表时,数据库会对这些资源加锁,以确保数据的完整性。如果一个事务获得了写锁,其他写操作必须等待这个事务完成并释放锁,这就会引发锁等待或死锁等问题。
4. 写锁问题的示例
假设有两个并发的 HTTP 请求,它们同时到达 Node.js 的服务器。两个请求都试图更新数据库中的同一行数据。虽然 Node.js 在单线程中处理这些请求,但它会几乎同时将两个更新请求发送到数据库。
-
请求 A 和 请求 B 都想更新数据库中的某个资源(如一条记录)。
-
请求 A 可能会先获得数据库的写锁,开始执行事务。
-
请求 B 会被迫等待,因为写锁已经被请求 A 占用。
-
一旦请求 A 完成并释放锁,请求 B 才能够继续执行。
这种情况下,锁竞争的问题是在数据库层面发生的,而不是在 Node.js 中的事件循环上。
5. 写锁问题的解决方案
为了缓解数据库写锁问题,通常采用以下策略:
-
优化事务粒度:确保事务的执行时间尽可能短,以减少持锁时间。这样可以减少写锁持有的时间,从而降低锁等待的风险。
-
乐观锁定和悲观锁定:使用数据库支持的锁定机制,如乐观锁和悲观锁。乐观锁假设并发更新不会冲突,只有在提交时检查冲突。悲观锁则在修改前强制加锁以防止冲突。
-
分区和分片:将数据分布在多个数据库实例或分区中,减少单个数据库实例上的写锁竞争。
-
队列化写操作:在应用层对写操作进行队列化处理,确保同一时间只对同一个资源执行一个写操作。
6. 总结
虽然 Node.js 是单线程事件循环模型,但由于异步 I/O 和数据库的多线程机制,多个并发的数据库操作可以同时被发起,并在数据库层面引发锁竞争问题。数据库的锁机制是为了确保数据一致性和完整性,但在高并发写入场景下,可能会导致写锁争用或等待问题。有效的并发控制策略在数据库设计中是非常关键的。
1万+

被折叠的 条评论
为什么被折叠?



