利用神器BTrace 追踪线上 Spring Boot应用运行时信息

Profile


概述

生产环境中的服务可能会出现各种问题,但总不能让服务下线来专门排查错误,这时候最好有一些手段来获取程序运行时信息,比如 接口方法参数/返回值、外部调用情况 以及 函数执行时间等信息以便定位问题。传统的日志记录方式的确可以,但有时非常麻烦,甚至可能需要重启服务,因此代价太大,这时可以借助一个牛批的工具:BTrace

BTrace 可用于动态跟踪正在运行的 Java程序,其原理是通过动态地检测目标应用程序的类并注入跟踪代码 ( “字节码跟踪” ),因此可以直接用于监控和追踪线上问题而无需修改业务代码并重启应用程序。

BTrace 的使用方式是用户自己编写符合 BTrace使用语法的脚本,并结合btrace命令,来获取应用的一切调用信息,就像下面这样:

<btrace>/bin/btrace <PID> <trace_script>
  • 其中 <PID>为被监控 Java应用的 进程ID
  • <trace_script> 为 根据需要监控的信息 而自行编写的 Java脚本

本文就来实操一波 BTrace工具的使用,实验环境如下:

注: 本文首发于 My Personal Blog:CodeSheep·程序羊,欢迎光临 小站


BTrace 安装部署

这里我解压到目录:/home/btrace

  • 配置系统环境变量
vim /etc/profile

BTRACE_HOME=/home/btrace
export BTRACE_HOME
export PATH=$PATH:$BTRACE_HOME/bin
  • 验证 BTrace安装情况
btrace --version

编译 BTrace源码

  • 克隆源码
git clone git@github.com:btraceio/btrace.git
  • 编译源码
./gradlew build

编译源码

  • 构建完成的生成物路径位于build/libs目录下

构建生成物路径

我们取出构建生成的 jar包供下文使用。


利用btrace追踪 Spring Boot应用例析

首先我们得构造一个 Spring Boot的模拟业务 用于下文被追踪和分析,这里我就使用文章 《Spring Boot应用缓存实践之:Ehcache加持》中的实验工程。

我们在此工程里再添加一个 scripts包,用于放置 btrace 脚本文件:

项目结构

由于 btrace脚本中需要用到 btrace相关的组件和函数库,因此我们还需要在工程的 pom.xml中引入 btrace的依赖,所使用的 jar包就是上文编译生成的 btrace-1.3.11.3.jar

        <dependency>
            <groupId>com.sun.btrace</groupId>
            <artifactId>btrace</artifactId>
            <version>1.3.11.3</version>
        </dependency>

Talk is cheap ,Show you the code !接下来就用四五个实验来说明一切吧:


0x01 监控方法耗时情况

btrace 脚本:

@BTrace
public class BtraceTest2 {

    @OnMethod(clazz = "cn.codesheep.springbt_brace.controller.UserController", method = "getUsersByName", location = @Location(Kind.RETURN))
    public static void getFuncRunTime( @ProbeMethodName String pmn, @Duration long duration) {
        println( "接口 " + pmn + strcat("的执行时间(ms)为: ", str(duration / 1000000)) ); //单位是纳秒,要转为毫秒
    }
}

接下来开始运行 btrace脚本来拦截方法的参数,首先我们用 jps命令取到需要被监控的 Spring Boot应用的进程 Id为 27887,然后执行:

/home/btrace/bin/btrace 27887 BtraceTest2.java

这里我总共对 /getusersbyname接口发出了 12次 POST请求,情况如下:

12次请求情况

接下来我们再看看利用btrace脚本监控到的 /getuserbyname接口的执行时间:

12次请求所对应的接口调用时间

这样一对比很明显,从数据库取数据还是需要 花费十几毫秒的,但从缓存读取数据 几乎没有耗时,这就是为什么要让缓存加持于应用的原因!!!


0x02 拦截方法的 参数/返回值

btrace 脚本:

    @OnMethod(
            clazz = "cn.codesheep.springbt_brace.controller.UserController",
            method = "getUsersByName",
            location = @Location(Kind.ENTRY)
    )
    public static void getFuncEntry(@ProbeClassName String pcn, @ProbeMethodName String pmn, User user ) {

        println("类名: " + pcn);
        println("方法名: " + pmn);

        // 先打印入参实体整体信息
        BTraceUtils.print("入参实体为: ");
        BTraceUtils.printFields(user);

        // 再打印入参实体每个属性的信息
        Field oneFiled = BTraceUtils.field("cn.codesheep.springbt_brace.entity.User", "userName");
        println("userName字段为: " + BTraceUtils.get(oneFiled, user));

        oneFiled = BTraceUtils.field("cn.codesheep.springbt_brace.entity.User", "userAge");
        println("userAge字段为: " + BTraceUtils.get(oneFiled, user));

    }

接下来开始运行 btrace脚本来拦截方法的参数,首先我们用 jps命令取到需要被监控的java应用的进程 Id为 27887,然后执行:

/home/btrace/bin/btrace -cp springbt_brace/target/classes 27887 BtraceTest4.java

此时正常带参数 {"userName":"codesheep.cn"} 去请求业务接口:POST /getusersbyname,会得到如下输出:

成功拦截到了接口入参

很明显请求参数已经被 btrace给拦截到了

同理,如果想拦截方法的返回值,可以使用如下 btrace脚本:

    @OnMethod(
            clazz = "cn.codesheep.springbt_brace.controller.UserController",
            method = "getUsersByName",
            location = @Location(Kind.RETURN)  //函数返回的时候执行,如果不填,则在函数开始的时候执行
    )
    public static void getFuncReturn( @Return List<User> users ) {
        println("返回值为: ");
        println(str(users));
    }

运行 btrace命令后,继续请求想要被监控的业务接口,则可以得到类似如下的输出:

成功拦截到了接口返回值


0x03 监控代码是否到达了某类的某一行

btrace 脚本如下:

@BTrace
public class BtraceTest3 {

    @OnMethod(
            clazz="cn.codesheep.springbt_brace.service.UserService",
            method="getUsersByName",
            location=@Location(value= Kind.LINE, line=28)  // 比如拦截第28行, 28行是从数据库取数据操作
    )
    public static void lineTest( @ProbeClassName String pcn, @ProbeMethodName String pmn, int line ) {
        BTraceUtils.println("ClassName: " + pcn);
        BTraceUtils.println("MethodName: " + pmn);
        BTraceUtils.println("执行到的line行数: " + line);
    }
}

执行 btrace追踪命令

/home/btrace/bin/btrace 28927 BtraceTest3.java

接着用 POSTMAN工具连续发出了对 /getuserbyname接口的 十几次POST请求,由于只有第一次请求没有缓存时才会从数据库读,因此也才会执行到 UserService类的第 28行 !


0x04 监控指定函数中所有外部调用的耗时情况

btrace脚本如下:

@BTrace
public class BtraceTest5 {

    @OnMethod (clazz = "cn.codesheep.springbt_brace.service.UserService",method = "getUsersByName",
    location=@Location(value= Kind.CALL, clazz="/.*/", method="/.*/", where = Where.AFTER) )
    public static void printMethodRunTime(@Self Object self,@TargetInstance Object instance,@TargetMethodOrField String method, @Duration long duration) {

        if( duration > 5000000 ){  //如果外部调用耗时大于 5ms 则打印出来
            println( "self: " + self );
            println( "instance: " + instance );
            println( method + ",cost:" + duration/1000000 + " ms" );
        }
    }

}

执行监控命令:

/home/btrace/bin/btrace 28927 BtraceTest5.java

然后再对接口 /getuserbyname发出POST请求,观察监控结果如下:

发现最耗时的外部调用来源于 MyBatis调用

我们发现最耗时的外部调用来源于 MyBatis调用。


0x05 其他追踪与监控

除了上面四种典型的追踪场景之外,其他的 btrace追踪与监控场景还比如 查看谁调用了System.gc(),调用栈如何,则可以使用如下 btrace脚本进行监控

@BTrace
public class BtraceTest {
    @OnMethod(clazz = "java.lang.System", method = "gc")
    public static void onSystemGC() {
        println("entered System.gc()");
        jstack();
    }
}

很明显,因为btrace 内置了一系列诸如 jstack等十分有用的监控命令。

当然最后需要说明的是 btrace内置了很多语法和命令,可以应对很多线上 Java应用监控场景,大家可以去研究一下官方文档


后记

由于能力有限,若有错误或者不当之处,还请大家批评指正,一起学习交流!



长按扫描 下面的 小心心 来订阅作者公众号 CodeSheep,获取更多 务实、能看懂、可复现的 原创文 ↓↓↓

CodeSheep · 程序羊


展开阅读全文

150讲轻松搞定Python网络爬虫

05-16
【为什么学爬虫?】        1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!        2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和网站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: 网络请求:模拟浏览器的行为从网上抓取数据。 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。   从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! 【课程服务】 专属付费社群+每周三讨论会+1v1答疑
©️2020 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值