2.1神经网络基础-二分分类

本文探讨了神经网络基础中的二分分类方法,以逻辑回归为例,介绍了如何利用计算机视觉技术处理图片输入,如将64x64像素RGB图像转化为12288维特征向量。通过矩阵表示方式,解释了如何训练分类器预测猫与非猫的标签,重点关注了从特征提取到模型训练的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.1神经网络基础-二分分类

  • 如果你有一个m大小的训练集,你会习惯性的用for循环,来遍历这个m样本。实际上,你要遍历整个样本集,不需要使用for循环。

  • 前向传播、反向传播(通过逻辑回归来理解:用于二分分类的算法)

  • 二分分类的例子 你有一个图片作为输入,如果是猫输出1,否则输出0
    在这里插入图片描述

    计算机保存图片,要保存三个独立的矩阵,红、绿、蓝三个颜色通道。假设图片是64乘64像素,就会有三个64乘64的矩阵分别对应三个像素的亮度。把这些像素值提取放入一个特征向量x(需定义一个n/nx,维度为64乘64乘3=12288)。

  • 在二分分类问题中,目标是训练出一个分类器
    在这里插入图片描述

以图片的特征向量x作为输入;预测结果输出标签y(0或1);用(x,y)表示一个单独训练样本;x是nx维特征向量;标签y(0/1);训练集有m个训练样本(样本1,样本2…样本m);矩阵X表示输入x,矩阵Y表示输出标签y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值