2.1神经网络基础-二分分类
-
如果你有一个m大小的训练集,你会习惯性的用for循环,来遍历这个m样本。实际上,你要遍历整个样本集,不需要使用for循环。
-
前向传播、反向传播(通过逻辑回归来理解:用于二分分类的算法)
-
二分分类的例子 你有一个图片作为输入,如果是猫输出1,否则输出0
计算机保存图片,要保存三个独立的矩阵,红、绿、蓝三个颜色通道。假设图片是64乘64像素,就会有三个64乘64的矩阵分别对应三个像素的亮度。把这些像素值提取放入一个特征向量x(需定义一个n/nx,维度为64乘64乘3=12288)。
-
在二分分类问题中,目标是训练出一个分类器
以图片的特征向量x作为输入;预测结果输出标签y(0或1);用(x,y)表示一个单独训练样本;x是nx维特征向量;标签y(0/1);训练集有m个训练样本(样本1,样本2…样本m);矩阵X表示输入x,矩阵Y表示输出标签y