机器学习(周志华) (第八章)课后答案(欢迎探讨)

作为一个初学者,尝试着去写作业,并对答案做个整理附录。 这里是第八章。 集成学习


8.1 假设抛硬币正面朝上的概率为p , 反面朝上的概率为 1-p.  令H(n)代表抛n次硬币所得正面朝上的次数,则最多k次正面朝上的概率为

   (典型的二项分布 对小于等于k 的 做累加和) 


对 δ > 0,k = ( p -  δ)n ,  有 Hoeffding 不等式 

   

(可以理解为 针对上面二项分布,如果我们以更小的概率做期望,去让k次正面朝上小于这个数值的概率,则一定小于这个更小概率差和n的一个指数定值)显然,δ 越大,统计口径k 越小,小于的定值也越大  n 越大,小于的定值越小。

试推导出 8.3 









阅读更多
文章标签: machine learning
个人分类: machine learning
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭