乐观锁和悲观锁的区别?

乐观锁和悲观锁是在并发控制领域常用的两种并发控制策略,用于管理多个线程或进程同时访问共享资源的情况。它们的主要区别在于对数据的访问态度和处理方式。

一、悲观锁

悲观锁的基本思想是,在整个数据处理过程中,认为数据会发生冲突,因此在访问数据之前就对数据进行加锁,以防止其他事务的访问。悲观锁常用于写操作较多的情况,例如数据库的更新、删除等操作。

特点:

锁定资源: 在读取或修改数据之前,先获取锁,其他线程需要等待当前线程释放锁才能访问。
阻塞等待: 如果一个线程获取了悲观锁,其他线程就必须等待,直到该线程释放锁。

优点:

保证数据一致性: 由于每次访问都会加锁,可以确保在同一时刻只有一个线程对数据进行操作,保证数据的一致性。
简单直观: 实现相对简单,容易理解。

缺点:

性能开销大: 因为需要频繁加锁和释放锁,会导致系统性能下降,尤其在高并发的情况下。
可能导致死锁: 如果不恰当地使用锁,容易导致死锁问题,降低系统的可用性。

二、乐观锁

乐观锁的基本思想是,认为数据在一般情况下不会发生冲突,因此不加锁而是在更新时检查是否有其他线程对数据进行了修改。如果检测到冲突,就放弃当前操作,否则继续进行。乐观锁常用于读操作较多的情况,例如数据库的查询操作。

特点:

不加锁: 在读取或修改数据之前不加锁,允许多个线程同时访问。
冲突检测: 在更新时,通过版本号、时间戳等机制检测数据是否被其他线程修改。

优点:

减少锁冲突: 不加锁的特性降低了锁的竞争,提高了系统的并发性能。
降低死锁风险: 由于不涉及锁定资源,因此避免了死锁的风险。

缺点:

数据一致性难以保证: 由于不是立即锁定资源,可能导致多个线程同时修改同一数据,需要通过冲突检测和回滚机制来保证数据的一致性。
实现复杂: 需要引入版本号或时间戳等机制,增加了系统的复杂性。

三、应用场景

1. 悲观锁适用场景:

写操作频繁的情况,例如数据库的更新、删除等。
数据竞争激烈,对数据一致性要求较高的场景。

2. 乐观锁适用场景:

读操作频繁的情况,例如数据库的查询操作。
数据竞争相对较小,对性能要求较高的场景。

四、实现方式

1. 悲观锁实现方式:

数据库中常用的悲观锁有排他锁(Exclusive Lock)和共享锁(Shared Lock)。
在编程中,可以使用关系型数据库提供的事务机制,或者使用编程语言提供的锁机制。

2. 乐观锁实现方式:

使用版本号或时间戳等机制,记录数据的版本信息。
在更新数据时,检查版本号或时间戳,确保当前操作不会覆盖其他线程的修改。
常见的实现方式包括版本号控制、CAS(Compare and Swap)操作等。

五、总结

乐观锁和悲观锁是在并发控制领域常见的两种策略,它们分别适用于不同的应用场景。悲观锁在数据访问之前加锁,保证了数据的一致性,但性能开销较大;而乐观锁不加锁,通过冲突检测来提高并发性能,但需要处理数据一致性的问题。在实际应用中,选择合适的锁策略取决于具体的业务需求和系统性能要求。
在这里插入图片描述

乐观锁(Optimistic Locking)悲观锁(Pessimistic Locking)是并发控制中常用的两种机制,主要用于处理多个事务同时访问共享数据时的数据一致性问题。 --- ## 一、悲观锁(Pessimistic Locking) ### 定义 悲观锁假设**并发冲突经常发生**,因此在访问数据时就加锁,防止其他事务修改数据。 ### 实现方式 在数据库中,通过 `SELECT ... FOR UPDATE` 或 `SELECT ... LOCK IN SHARE MODE` 实现。 ### 特点 - 加锁成本高,适用于并发冲突频繁的场景。 - 保证强一致性。 - 容易造成阻塞、死锁。 ### 示例(JPA中使用悲观锁): ```java @Lock(LockModeType.PESSIMISTIC_WRITE) @Query("SELECT u FROM User u WHERE u.id = :id") User findUserByIdWithPessimisticLock(@Param("id") Long id); ``` --- ## 二、乐观锁(Optimistic Locking) ### 定义 乐观锁假设**并发冲突很少发生**,在提交更新时才检查是否有冲突。如果有冲突,则拒绝更新并提示用户重试。 ### 实现方式 - 使用版本号(`@Version` 注解)。 - 使用时间戳。 - 手动比较字段差异(如ETag)。 ### 特点 - 无锁读取,性能好。 - 适合读多写少的场景。 - 可能导致更新失败,需要重试机制。 ### 示例(使用`@Version`实现乐观锁): ```java @Entity public class User { @Id private Long id; private String name; @Version private int version; } ``` 当两个事务同时修改该记录时: - 第一个事务提交后,`version` 会自动加1。 - 第二个事务提交时发现版本号不一致,抛出 `OptimisticLockException`。 --- ## 三、区别总结 | 特性 | 悲观锁 | 乐观锁 | |--------------------|----------------------------------|----------------------------------| | 假设 | 并发冲突频繁 | 并发冲突较少 | | 加锁时机 | 读取数据时即加锁 | 提交更新时检查版本 | | 性能 | 低(加锁开销大) | 高(无锁读取) | | 数据一致性 | 强一致性 | 最终一致性 | | 适用场景 | 写操作频繁、并发高 | 读多写少、并发低 | | 实现方式 | `SELECT ... FOR UPDATE` | `@Version`、ETag、时间戳等 | | 可能的问题 | 死锁、阻塞 | 更新失败、需要重试 | --- ##
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bug丶小狼人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值