当前搜索:

条件随机场实现命名实体识别

前言 NLP 被很多人称为人工智能皇冠上的明珠,可见其在 AI 领域的重要性,而命名实体识别(NER)又一直是 NLP 领域的研究热点,所以这块任务是 NLP 必谈的。 NER 早期的实现主要是基于词典和规则,然后是基于传统的机器学习,比如 HMM、MEMM 和 CRF。随后深度学习崛起则很多...
阅读(194) 评论(0)

机器学习之神经网络

多层神经网络前面说到的感知器是一种最基础的神经网络,他只有输入层和输出层,感知器只能处理线性可分问题,而对于非线性问题就需要多层神经网络。一般如下图所示,有多个层,比如左边的包含输入层、隐层和输出层,而右边的则包含了两个隐层。每层的神经元与下一神经元全互连,同层之间的神经元不会相连,输入层用于接收...
阅读(1415) 评论(0)

机器学习之梯度下降法

方向导数如图,对于函数f(x,y),函数的增量与pp’两点距离之比在p’沿l趋于p时,则为函数在点p沿l方向的方向导数。记为$\frac{\partial f}{\partial l} = \lim_{\rho \rightarrow 0} \frac{f(x+\Delta x,y+\Delta ...
阅读(1302) 评论(0)

机器学习之层次聚类

层次聚类聚类是将样本进行归类形成K个簇,层次聚类是其中的一种方法。它将数据组成一棵聚类树,过程可以是凝聚形式或分裂形式。核心思想凝聚是一开始将每个样本当做一个聚类,接着通过计算将距离最近的两个聚类合并,成为新聚类,每次合并聚类总数减少一个,不断循环合并操作,直到所有聚类合并成一个聚类或当聚类数量到...
阅读(1778) 评论(0)

k-means聚类算法

聚类聚类主要内容是将样本进行归类,同种类别的样本放到一起,所有样本最终会形成K个簇,它属于无监督学习。核心思想根据给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个类簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新类簇中,不断循环此操...
阅读(2514) 评论(0)

线性回归之最小二乘法

线性回归线性回归是很常见的一种回归,线性回归可以用来预测或者分类,主要解决线性问题。最小二乘法线性回归过程主要解决的就是如何通过样本来获取最佳的拟合线。最常用的方法便是最小二乘法,它是一种数学优化技术,它通过最小化误差的平方和寻找数据的最佳函数匹配。代数推导: 假设拟合直线为y=ax+by=ax+...
阅读(4360) 评论(0)
    作者
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 115万+
    积分: 1万+
    排名: 964
    博客专栏
    最新评论