seaboat的专栏——a free boat on the sea.

思想自由,技术自由

我的2017年文章汇总——机器学习篇

2018,你跟自己做了约定了吗?为了遇见更好的自己。近期准备把过去一年写的文章按照分类重新整理推送一遍,包括:“分布式”、“机器学习”、“深度学习”、“NLP”、“Java深度”、“Java并发核心”、“JDK源码”、“Tomcat内核”。本篇推送机器学习相关文章。强化学习机器学习之条件随机场(C...

2017-12-31 13:02:58

阅读数:2288

评论数:2

开源一个文本分析项目

Githubhttps://github.com/sea-boat/TextAnalyzerTextAnalyzera text analizer that can analyze text. so far, it can extract hot words in a text segment b...

2017-06-12 18:18:42

阅读数:1714

评论数:0

机器学习的监督学习在研究什么

什么是监督学习简单来说,监督学习是对给定的输入输出样本进行学习并建立一个模型,该模型能对任意输入做出好的输出预测。 监督学习核心思想 所有可能的模型函数的集合称为假设空间,$H=\left \{ f|Y=f(X) \right \}$。 对于所有的模型函数集合,可能不知道是该用用逻辑回归模型、或...

2017-03-17 20:05:08

阅读数:2543

评论数:0

神经网络原理的可视化

前言 神经网络具有很强的学习能力和自适应自组织能力,而且随着隐含层的数量增大学习能力也将变得更强,因此目前很多场景都使用神经网络,比如深度学习,我们更熟悉的就是阿法狗。 关于神经网络 神经网络已经有很多变种,比如卷积神经网络、循环神经网络等等。 感知器是一种最基础的神经网络,他只有输入...

2018-05-09 09:45:32

阅读数:374

评论数:1

如何生成指定分布的随机数

前言 对于随机数平时我们还是比较常用的,一般都会直接通过各种语言原生自带的随机函数,比如 c++ 中有random()函数,java 中有 Random 类,python 有 random 模块等等。都能很方便生成随机变量,但它们有一个特点,那就是都服从均匀分布,而有些场景需要要生成不同分布的随...

2018-04-26 08:42:19

阅读数:328

评论数:0

智能算法之提升方法

提升方法 提升方法的核心思想是通过将多个效果很一般的分类器(弱分类器)组合起来综合考虑,以实现一个效果较好的分类器,这就像“三个臭皮匠赛过诸葛亮”。弱学习者学习出来的效果可能只比随机分类器效果好一点,于是有人提出用一个弱分类器集合生成一个强分类器。 因为是将弱分类器提升为强分类器,所以叫提升方...

2018-04-19 09:57:13

阅读数:103

评论数:0

智能算法之隐马尔可夫模型(HMM)

前言 前面的《马尔科夫模型》主要是研究能直接观察到的序列的概率问题,通过马尔科夫假设能建立起马尔科夫链,从而解决一些序列问题。但有时候观察的对象并不是我们待处理的目标对象,它的规律隐含在观察对象中,观察的事件和隐含事件存在一定的相关关系,这时候就要用到隐马尔科夫模型(HMM)。 比如nlp中常...

2018-02-27 08:31:53

阅读数:266

评论数:0

智能算法之马尔可夫模型

前言 可能大家更常见到隐马尔科夫模型(HMM),马尔科夫模型可以看成是一个更基础的模型,它是对能直接观察到的事件进行建模,所以与HMM相对应,有时也叫它为显马尔科夫(VMM)。马尔科夫模型要处理的是序列问题,核心思想就是统计所有样本的过程,得到系统中状态之间的转移概率。 马尔可夫过程 马...

2018-02-10 09:25:01

阅读数:354

评论数:0

一图简看智能聊天机器人的设计

(早前的一个智能聊天机器人设计,实际使用中已经改了很多了。) 简述 主要分三块: * SuperRobot 框架主体。 * 自然语言理解系统。 * 词向量Trainer。 SuperRobot AliceBot负责闲聊,采用AIML Engine,属于rulebased...

2018-02-03 10:19:59

阅读数:1016

评论数:0

机器学习之决策树

前言 决策树是很常见的机器学习分类算法,竟然叫决策树,那么它的模型其实就像树一样。通过对样本集的学习,挖掘出有用的规则。对于程序员来说或许以条件语句来看就更好理解了,决策树可以看成是多个if then条件语句的集合。这种模型等同于我们写的条件语句,所以它的预测分类速度是很快的。 例子 来...

2018-01-28 10:03:06

阅读数:713

评论数:1

机器学习之支持向量机(SVM)

SVM SVM 即支持向量机,常用于二分类模型。它主要的思想是: 1. 它是特征空间上间隔最大的线性分类器。 2. 对于线性不可分的情况,通过非线性映射算法将低维空间的线性不可分的样本映射到高维特征空间,高维特征空间能够进行线性分析。 结构风险 对于指定的损失函数,根据一定的样本集就...

2018-01-20 10:06:01

阅读数:341

评论数:0

基于典型相关分析的词向量

本文首发于雷锋网 前言 在NLP领域中,为了能表示人类的语言符号,一般会把这些符号转成一种数学向量形式以方便处理,我们把语言单词嵌入到向量空间中就叫词嵌入(word embedding)。 比如有比较流行的谷歌开源的 word2vec ,它能生成词向量,通过该词向量在一定程度上还可以用来...

2018-01-09 16:49:10

阅读数:1101

评论数:0

机器学习之牛顿法

泰勒公式首先看泰勒公式,对于函数,如果函数平滑且某点存在各阶导数,则可以用一个多项式来描述该点邻域的近似值。公式如下:牛顿法牛顿法一般用来求解方程的根和求解极值。数值优化算法除了梯度下降法外还有比较常用的一种方法是牛顿法。对于非线性方程,可以用牛顿迭代法进行求解,它收敛速度快。基本思想是:对于非线...

2017-12-31 12:53:43

阅读数:926

评论数:0

典型相关分析如何分析两组变量的关系

前言我们在分析两组变量之间的相关性时,比如X=[X1,X2,...,Xm]X=[X_1,X_2,...,X_m]和Y=[Y1,Y2,...,Yn]Y=[Y_1,Y_2,...,Y_n],最原始的方法就是直接计算X和Y的协方差矩阵,矩阵有m*n个值。有了协方差矩阵就得到了两两变量之间的相关性,比如c...

2017-12-07 09:15:44

阅读数:1899

评论数:0

主成分分析(PCA)

前言主成分分析是一种统计学方法,它主要通过降维来简化数据结构,将多个变量转化成少数的几个综合变量,而综合变量能很好地表达原来多个变量的大部分信息,变量之间需要要具备相关性,而经过分析后的变量之间没有相关性。基本原理简单从感性角度来了解它的原理就是,比如有两个变量,如下图,看起来它俩的信息量差不多,...

2017-11-23 08:57:11

阅读数:1241

评论数:1

机器学习之牛顿法

泰勒公式首先看泰勒公式,对于函数,如果函数平滑且某点存在各阶导数,则可以用一个多项式来描述该点邻域的近似值。公式如下:牛顿法牛顿法一般用来求解方程的根和求解极值。数值优化算法除了梯度下降法外还有比较常用的一种方法是牛顿法。对于非线性方程,可以用牛顿迭代法进行求解,它收敛速度快。基本思想是:对于非线...

2017-11-16 09:49:34

阅读数:605

评论数:0

机器学习之条件随机场(CRF)

什么是CRFCRF即条件随机场(Conditional Random Fields),是在给定一组输入随机变量条件下另外一组输出随机变量的条件概率分布模型,它是一种判别式的概率无向图模型,既然是判别式,那就是对条件概率分布建模。CRF较多用在自然语言处理和图像处理领域,在NLP中,它是用于标注和划...

2017-11-09 14:46:13

阅读数:1584

评论数:0

来自麻省理工的信息抽取

MITIEMITIE 即 MIT 的 NLP 团队发布的一个信息抽取库和工具。它是一款免费且先进的信息抽取工具,目前包含了命名实体抽取、二元关系检测功能,另外也提供了训练自定义抽取器和关系检测器的工具。MITIE 是核心代码是使用 C++ 写的,建立在高性能的机器学习库 dlib 上。MIT 团队...

2017-11-02 08:51:50

阅读数:2515

评论数:0

强化学习

前言机器学习可以大致分为四类: 监督学习 无监督学习 半监督学习 强化学习 监督学习是利用标记了的样本进行学习,无监督学习则是使用未标记的样本进行学习,这两个是我们最常见的。半监督学习则是样本中只有少量带标记的样本,多数样本都未标记,利用这些样本进行学习。强化学习则是很不同的一种学习方式,它没有规...

2017-10-19 10:23:01

阅读数:1351

评论数:0

隐马尔可夫模型的Viterbi解码算法

前言前面在做自然语言处理时涉及到一些词性标注的工作,一般会使用隐马尔科夫模型(HMM)来实现词性标注,而HMM模型的解码实现算法一般就会使用Viterbi算法。关于穷举法HMM模型有多种应用,这里说的是其中一个常见应用,即根据观察序列找到最可能的隐含状态序列。最朴素的想法就是直接穷举所有可能的隐含...

2017-09-21 08:42:04

阅读数:1221

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭