seaboat的专栏——a free boat on the sea.

思想自由,技术自由

softmax的多分类

关于多分类

我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——softmax。

关于softmax

softmax的函数为

P(i)=exp(θTix)Kk=1exp(θTkx)

可以看到它有多个值,所有值加起来刚好等于1,每个输出都映射到了0到1区间,可以看成是概率问题。

θTix为多个输入,训练其实就是为了逼近最佳的θT

如何多分类

从下图看,神经网络中包含了输入层,然后通过两个特征层处理,最后通过softmax分析器就能得到不同条件下的概率,这里需要分成三个类别,最终会得到y=0、y=1、y=2的概率值。

这里写图片描述

继续看下面的图,三个输入通过softmax后得到一个数组[0.05 , 0.10 , 0.85],这就是soft的功能。

这里写图片描述

计算过程直接看下图,其中zLi即为θTix,三个输入的值分别为3、1、-3,ez的值为20、2.7、0.05,再分别除以累加和得到最终的概率值,0.88、0.12、0。

这里写图片描述

代价函数

对于训练集{(x(1),y(1)),...,(x(m),y(m))},有y(i){1,2,3...,k},总共有k个分类。对于每个输入x都会有对应每个类的概率,即p(y=j|x),从向量角度来看,有,

hθ(x(i))=p(y(i)=1|x(i);θ)p(y(i)=2|x(i);θ)p(y(i)=k|x(i);θ)=1kj=1eθTjx(i)eθT1x(i)eθT2x(i)eθTkx(i)

softmax的代价函数定为如下,其中包含了示性函数1{j=y(i)},表示如果第i个样本的类别为j则yij=1。代价函数可看成是最大化似然函数,也即是最小化负对数似然函数。

J(θ)=1m[mi=1kj=11{y(i)=j}log(p(y(i)=j|x(i);θ))]

其中,p(y(i)=j|x(i);θ)=exp(θTix)Kk=1exp(θTkx)则,

J(θ)=1m[mi=1kj=11{y(i)=j}(θTjx(i)log(kl=1eθTlx(i)))]

一般使用梯度下降优化算法来最小化代价函数,而其中会涉及到偏导数,即θj:=θjαδθjJ(θ),则J(θ)θj求偏导,得到,

J(θ)θj=1mmi=1[kj=11{y(i)=j}θTjx(i)θjkj=11{y(i)=j}log(kl=1eθTlx(i)))θj]

=1mmi=1[1{y(i)=j}x(i)kj=11{y(i)=j}kl=1eθTlx(i)kl=1eθTlx(i)θj]

=1mmi=1[1{y(i)=j}x(i)x(i)eθTjx(i)kl=1eθTlx(i)]

=1mmi=1x(i)[1{y(i)=j}p(y(i)=j|x(i);θ)]

得到代价函数对参数权重的梯度就可以优化了。

使用场景

在多分类场景中可以用softmax也可以用多个二分类器组合成多分类,比如多个逻辑分类器或SVM分类器等等。该使用softmax还是组合分类器,主要看分类的类别是否互斥,如果互斥则用softmax,如果不是互斥的则使用组合分类器。

========广告时间========

公众号的菜单已分为“分布式”、“机器学习”、“深度学习”、“NLP”、“Java深度”、“Java并发核心”、“JDK源码”、“Tomcat内核”等,可能有一款适合你的胃口。

鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以购买。感谢各位朋友。

为什么写《Tomcat内核设计剖析》

=========================

欢迎关注:

这里写图片描述

阅读更多

扫码向博主提问

去开通我的Chat快问

wangyangzhizhou

博客专家

java深度,架构,AI,中间件,高并发
  • 擅长领域:
  • java
  • 架构
  • 中间件
  • tomcat
  • AI
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/wangyangzhizhou/article/details/75088106
个人分类: 机器学习
所属专栏: 机器学习&深度学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭