MNIST手写数字体分类--KNN matlab实现

这篇博客介绍了如何使用KNN算法在MATLAB中实现MNIST手写数字的分类。虽然运行时间较慢,作者指出未进行主成分分析是效率低下的原因,并建议进行改进。此外,还提到了一些次要代码。
摘要由CSDN通过智能技术生成

关于数据集神马的,请直接参考:http://blog.csdn.net/wangyuquanliuli/article/details/11606435

这里直接给出KNN matlab的实现


trainImages = loadMNISTImages('train-images.idx3-ubyte');      
trainLabels = loadMNISTLabels('train-labels.idx1-ubyte');
N = 784;
K = 100;% can be any other value
testImages = loadMNISTImages('t10k-images.idx3-ubyte');
testLabels = loadMNISTLabels('t10k-labels.idx1-ubyte');
trainLength = length(trainImages);
testLength = length(testImages);
testResults = linspace(0,0,length(testImages));
compLabel = linspace(0,0,K);
tic;
for i=1:testLength
    curImage = repmat(testImages(:,i),1,trainLength);
    curImage = abs(trainImages-curImage);
    comp=sum(curImage);
    [sortedComp,ind] = sort(comp);
    
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值