文章目录
300. 最长上升子序列
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:
可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?
动态规划
class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
if (nums == null || n == 0) {
return 0;
}
int[] dp = new int[n];
for (int i = 0; i < n; ++i) {
int count = 1;
for (int j = 0; j < i; ++j) {
if (nums[i] > nums[j]) {
count = Math.max(count, dp[j] + 1);
}
}
dp[i] = count;
}
int maxLength = 0;
for (int i = 0; i < n; ++i) {
maxLength = Math.max(maxLength, dp[i]);
}
return maxLength;
}
}
二分查找
以上解法的时间复杂度为 O(N2),可以使用二分查找将时间复杂度降低为 O(NlogN)。
定义一个 tails 数组,其中 tails[i] 存储长度为 i + 1 的最长递增子序列的最后一个元素。对于一个元素 x,
如果它大于 tails 数组所有的值,那么把它添加到 tails 后面,表示最长递增子序列长度加 1;
如果 tails[i-1] < x <= tails[i],那么更新 tails[i] = x。
例如对于数组 [4,3,6,5],有:
tails len num
[] 0 4
[4] 1 3
[3] 1 6
[3,6] 2 5
[3,5] 2 null
可以看出 tails 数组保持有序,因此在查找 Si 位于 tails 数组的位置时就可以使用二分查找。
class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
if (nums == null || n == 0) {
return 0;
}
int[] tails = new int[n];
int maxLength = 0;
for (int num : nums) {
int index = binarySearch(tails, maxLength, num);
tails[index] = num;
if (index == maxLength) {
maxLength++;
}
}
return maxLength;
}
private int binarySearch(int[] tails, int len, int key) {
int left = 0, right = len;
while (left < right) {
int mid = left + (right - left) / 2;
if (tails[mid] == key) {
return mid;
} else if (tails[mid] > key) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
646. 最长数对链
给出 n 个数对。 在每一个数对中,第一个数字总是比第二个数字小。
现在,我们定义一种跟随关系,当且仅当 b < c 时,数对(c, d) 才可以跟在 (a, b) 后面。我们用这种形式来构造一个数对链。
给定一个对数集合,找出能够形成的最长数对链的长度。你不需要用到所有的数对,你可以以任何顺序选择其中的一些数对来构造。
示例 :
输入: [[1,2], [2,3], [3,4]]
输出: 2
解释: 最长的数对链是 [1,2] -> [3,4]
注意:
给出数对的个数在 [1, 1000] 范围内。
动态规划
class Solution {
public int findLongestChain(int[][] pairs) {
if (pairs == null || pairs.length == 0) {
return 0;
}
Arrays.sort(pairs, (a, b) -> (a[0] - b[0]));
int n = pairs.length;
int[] dp = new int[n];
Arrays.fill(dp, 1);
for (int i = 1; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (pairs[j][1] < pairs[i][0]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
}
}
int result = 0;
for (int d : dp) {
result = Math.max(d, result);
}
return result;
}
}
376. 摆动序列
如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 1:
输入: [1,7,4,9,2,5]
输出: 6
解释: 整个序列均为摆动序列。
示例 2:
输入: [1,17,5,10,13,15,10,5,16,8]
输出: 7
解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
示例 3:
输入: [1,2,3,4,5,6,7,8,9]
输出: 2
动态规划
class Solution {
public int wiggleMaxLength(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
int n = nums.length;
int up = 1, down = 1;
for (int i = 1; i < n; ++i) {
if (nums[i] > nums[i - 1]) {
up = down + 1;
} else if (nums[i] < nums[i - 1]) {
down = up + 1;
}
}
return Math.max(up, down);
}
}
1143. 最长公共子序列
给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
例如,“ace” 是 “abcde” 的子序列,但 “aec” 不是 “abcde” 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。
若这两个字符串没有公共子序列,则返回 0。
示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace",它的长度为 3。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc",它的长度为 3。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0。
提示:
1 <= text1.length <= 1000
1 <= text2.length <= 1000
输入的字符串只含有小写英文字符。
动态规划
class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length(), n = text2.length();
int[][] dp = new int[m + 1][n + 1];
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; ++j) {
if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
}
}
}
return dp[m][n];
}
}
416. 分割等和子集
给定一个只包含正整数的非空数组。是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。
注意:
每个数组中的元素不会超过 100
数组的大小不会超过 200
示例 1:
输入: [1, 5, 11, 5]
输出: true
解释: 数组可以分割成 [1, 5, 5] 和 [11].
示例 2:
输入: [1, 2, 3, 5]
输出: false
解释: 数组不能分割成两个元素和相等的子集.
动态规划
class Solution {
public boolean canPartition(int[] nums) {
int sum = 0;
int n = nums.length;
for (int num : nums) {
sum += num;
}
if (sum % 2 == 1) {
return false;
}
int target = sum / 2;
boolean[] dp = new boolean[target + 1];
dp[0] = true;
for (int num : nums) {
for (int i = target; i >= num; i--) {
if (dp[target] == true) {
return true;
}
dp[i] = dp[i] || dp[i - num];
}
}
return dp[target];
}
}
494. 目标和
给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例 1:
输入: nums: [1, 1, 1, 1, 1], S: 3
输出: 5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
注意:
数组非空,且长度不会超过20。
初始的数组的和不会超过1000。
保证返回的最终结果能被32位整数存下。
动态规划
class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for (int num : nums) {
sum += num;
}
if (sum < S || (sum + S) % 2 == 1) {
return 0;
}
int target = (sum + S) / 2;
int[] dp = new int[target + 1];
dp[0] = 1;
for (int num : nums) {
for (int i = target; i >= num; i --) {
dp[i] = dp[i] + dp[i - num];
}
}
return dp[target];
}
}