# 经典算法之图的广度优先搜索遍历

/************************
author's email:wardseptember@gmail.com
data:2017.12.14

************************/
/*

*/
#include<iostream>
#define maxSize 8
using namespace std;
typedef struct Node {
int vertex;
struct Node *pNext;
}Node;
char data;
Node *first;
int visit[maxSize];       //定义一个全局变量，用来判断某一结点是否被访问过
Graph create_graph();    //创建一个邻接表
void BFS(Graph graph, int v,int visit[maxSize]); //广度遍历连通图
void bfs(Graph graph);       //广度遍历非连通图
void BFSTrave(Graph graph, int i, int j);//判断顶点i和顶点j（i!=j）之间是否有路径
int main() {
Graph graph = create_graph();
cout << "广度遍历连通图结果为：";
BFS(graph, 7,visit);    //Bfs(graph);广度遍历非连通图
cout << endl;

int i, j;
cout << "请输入要判断的两个顶点(0-7):";
cin >> i >> j;
BFSTrave(graph, i, j);
return 0;
}
Graph create_graph()
{
//为保存顶点相关信息的数组分配空间，并对数据域赋值
Graph graph = (Graph)malloc(maxSize * sizeof(head));
int i;
//顶点的序号按照输入顺序从0依次向后
for (i = 0; i < maxSize; i++)
graph[i].data = 'A' + i;

//为每个节点对应的的单链表中的节点分配空间
Node *p00 = (Node *)malloc(sizeof(Node));
Node *p01 = (Node *)malloc(sizeof(Node));
Node *p10 = (Node *)malloc(sizeof(Node));
Node *p11 = (Node *)malloc(sizeof(Node));
Node *p12 = (Node *)malloc(sizeof(Node));
Node *p20 = (Node *)malloc(sizeof(Node));
Node *p21 = (Node *)malloc(sizeof(Node));
Node *p22 = (Node *)malloc(sizeof(Node));
Node *p30 = (Node *)malloc(sizeof(Node));
Node *p31 = (Node *)malloc(sizeof(Node));
Node *p40 = (Node *)malloc(sizeof(Node));
Node *p41 = (Node *)malloc(sizeof(Node));
Node *p50 = (Node *)malloc(sizeof(Node));
Node *p51 = (Node *)malloc(sizeof(Node));
Node *p60 = (Node *)malloc(sizeof(Node));
Node *p61 = (Node *)malloc(sizeof(Node));
Node *p70 = (Node *)malloc(sizeof(Node));
Node *p71 = (Node *)malloc(sizeof(Node));

//为各单链表中的节点的相关属性赋值
p00->vertex = 1;
p00->pNext = p01;
p01->vertex = 2;
p01->pNext = NULL;
p10->vertex = 0;
p10->pNext = p11;
p11->vertex = 3;
p11->pNext = p12;
p12->vertex = 4;
p12->pNext = NULL;
p20->vertex = 0;
p20->pNext = p21;
p21->vertex = 5;
p21->pNext = p22;
p22->vertex = 6;
p22->pNext = NULL;
p30->vertex = 1;
p30->pNext = p31;
p31->vertex = 7;
p31->pNext = NULL;
p40->vertex = 1;
p40->pNext = p41;
p41->vertex = 7;
p41->pNext = NULL;
p50->vertex = 2;
p50->pNext = p51;
p51->vertex = 6;
p51->pNext = NULL;
p60->vertex = 2;
p60->pNext = p61;
p61->vertex = 5;
p61->pNext = NULL;
p70->vertex = 3;
p70->pNext = p71;
p71->vertex = 4;
p71->pNext = NULL;

//将顶点与每个单链表连接起来
graph[0].first = p00;
graph[1].first = p10;
graph[2].first = p20;
graph[3].first = p30;
graph[4].first = p40;
graph[5].first = p50;
graph[6].first = p60;
graph[7].first = p70;

return graph;
}
void BFS(Graph graph, int v, int visit[maxSize]) {//广度优先遍历连通图
Node *p;
int que[maxSize], front = 0, rear = 0;//定义一个顺序队，并初始化
int j;
cout << graph[v].data<<' ';
visit[v] = 1;
rear = (rear + 1) % maxSize;    //v入队
que[rear] = v;
while (front != rear) {   //对空说明遍历完成
front = (front + 1) % maxSize;   //顶点出队
j = que[front];
p = graph[j].first;      //p指向出队顶点j的第一条边
while (p != NULL) {     //将p的所有邻接点中未被访问的入队
if (visit[p->vertex] == 0) {//当前邻接顶点未被访问，则进队
cout << graph[p->vertex].data<<' ';
visit[p->vertex] = 1;
rear = (rear + 1) % maxSize;//该顶点进队
que[rear] = p->vertex;
}
p = p->pNext;       //p指向j的下一条边
}
}
}
void bfs(Graph graph) {   //广度优先遍历非连通图
int i;
for (i = 0; i < maxSize; ++i)
if (visit[i] == 0)
BFS(graph, i,visit);
}
void BFSTrave(Graph graph, int i, int j) {//判断顶点i和顶点j（i!=j）之间是否有路径
int k;
for (k = 0; k < maxSize; ++k)
visit[k] = 0;
BFS(graph, i, visit);
cout << endl;
if (visit[j] == 1)//visit[j]=1则证明访问过程遇到了j
cout << "两顶点间有路径" << endl;
else
cout << "两顶点间无路径" << endl;
}