我只能对自己呵呵了。。
难道因为高数考挫了,当时考虑这题就没信心了吗。
再说高数考试能代表高数水平吗? 虽说偶高数也不好。
我记得好像自己就考虑到可以直线与平面交点来做了,好像代码不太会用。
然后校友就过了。。
比赛后我考虑一下似乎挺简单。 先叉乘求一法向量,此法向量垂直两直线,最短距离就为此。 交点就用直线平面交点。 怒艹。。
又仔细看了一下计算几何部分,忽然感觉部分是最简单的。
甚至花一天就可以把代码全理解,其实本来就不用理解,就是些高数的东西,当然复杂一点的还是比较难驾驭的。
整理一下计算几何模板。 水几发。 至少自己要会用那些基本的。 不挫,不坑
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <queue>
#include <cmath>
using namespace std;
struct Point3 //三维几何点
{
double x, y, z;
Point3(double x = 0, double y = 0, double z = 0):x(x), y(y), z(z) { }
};
typedef Point3 Vector3;
Vector3 operator + (Vector3 A, Vector3 B)
{
return Vector3(A.x+B.x,A.y+B.y,A.z+B.z);
}
Vector3 operator - (Point3 A, Point3 B) //这地方是两点坐标为参数。
{
return Vector3(A.x-B.x,A.y-B.y,A.z-B.z);
}
Vector3 operator * (Vector3 A,double p)
{
return Vector3(A.x*p,A.y*p,A.z*p);
}
Vector3 operator / (Vector3 A,double p)
{
return Vector3(A.x/p,A.y/p,A.z/p);
}
//点乘
double Dot(Vector3 A,Vector3 B) { return A.x*B.x + A.y*B.y + A.z*B.z; }
double Length(Vector3 A) { return sqrt(Dot(A,A)); }
double Angle(Vector3 A,Vector3 B) //两向量的角度(弧度)
{
return acos(Dot(A,B)/Length(A)/Length(B));
}
//点p到平面p0-n的距离
double Dot_plane(Point3 p, Point3 p0, Vector3 n)
{
//如果不取绝对值,得到的是有向距离
return fabs(Dot(p-p0,n))/Length(n);
}
//点p在平面p0-n上的投影
Point3 Projection(Point3 p, Point3 p0, Vector3 n)
{
double d = Dot(p-p0, n)/Length(n);
return p+n*d;
}
//直线p1-p2到平面p0-n的交点。假定交点唯一存在。
Point3 Lineplaneins(Point3 p1, Point3 p2, Point3 p0, Vector3 n)
{
Vector3 v = p2-p1;
double t = (Dot(n, p0-p1)/Dot(n, p2-p1)); //判断分母是否为0
return p1+v*t; //如果是线段,判断t是不是在0和1之间
}
Vector3 Cross(Vector3 A, Vector3 B) //叉乘
{
return Vector3(A.y*B.z - A.z*B.y, A.z*B.x - A.x*B.z, A.x*B.y - A.y*B.x);
}
int main()
{
int ncase;
scanf("%d",&ncase);
double x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4;
while(ncase--)
{
Point3 dot1, dot2, dot3, dot4;
scanf("%lf%lf%lf%lf%lf%lf",&x1, &y1, &z1, &x2, &y2, &z2);
scanf("%lf%lf%lf%lf%lf%lf",&x3, &y3, &z3, &x4, &y4, &z4);
Vector3 t1 = Vector3(x1 - x2, y1 - y2, z1 - z2);
Vector3 t2 = Vector3(x3 - x4, y3 - y4, z3 - z4);
Vector3 temp = Cross(t1, t2);
Vector3 fa1 = Cross(t1, temp);
Vector3 fa2 = Cross(t2, temp);
dot1 = Point3(x1, y1, z1);
dot2 = Point3(x2, y2, z2);
dot3 = Point3(x3, y3, z3);
dot4 = Point3(x4, y4, z4);
Point3 ans2 = Lineplaneins(dot3, dot4, dot1, fa1);
Point3 ans1 = Lineplaneins(dot1, dot2, dot3, fa2);
double ans3 = Length(ans1 - ans2);
printf("%.6lf\n",ans3);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",ans1.x, ans1.y, ans1.z, ans2.x, ans2.y, ans2.z);
}
return 0;
}