MyIASM引擎是为了查和增加,效率高。所有功能都围绕这这个
MySQL数据库引擎详解
第一篇:原文链接:http://www.2cto.com/database/201503/385669.html
Innodb引擎
Innodb引擎提供了对数据库ACID事务的支持,并且实现了SQL标准的四种隔离级别,关于数据库事务与其隔离级别的内容请见数据库事务与其隔离级别这篇文章。该引擎还提供了行级锁和外键约束,它的设计目标是处理大容量数据库系统,它本身其实就是基于MySQL后台的完整数据库系统,MySQL运行时Innodb会在内存中建立缓冲池,用于缓冲数据和索引。但是该引擎不支持FULLTEXT类型的索引,而且它没有保存表的行数,当SELECT COUNT(*) FROM TABLE时需要扫描全表。当需要使用数据库事务时,该引擎当然是首选。由于锁的粒度更小,写操作不会锁定全表,所以在并发较高时,使用Innodb引擎会提升效率。但是使用行级锁也不是绝对的,如果在执行一个SQL语句时MySQL不能确定要扫描的范围,InnoDB表同样会锁全表。
MyIASM引擎
MyIASM是MySQL默认的引擎,但是它没有提供对数据库事务的支持,也不支持行级锁和外键,因此当INSERT(插入)或UPDATE(更新)数据时即写操作需要锁定整个表,效率便会低一些。不过和Innodb不同,MyIASM中存储了表的行数,于是SELECT COUNT(*) FROM TABLE时只需要直接读取已经保存好的值而不需要进行全表扫描。如果表的读操作远远多于写操作且不需要数据库事务的支持,那么MyIASM也是很好的选择。
两种引擎的选择
大尺寸的数据集趋向于选择InnoDB引擎,因为它支持事务处理和故障恢复。数据库的大小决定了故障恢复的时间长短,InnoDB可以利用事务日志进行数据恢复,这会比较快。主键查询在InnoDB引擎下也会相当快,不过需要注意的是如果主键太长也会导致性能问题,关于这个问题我会在下文中讲到。大批的INSERT语句(在每个INSERT语句中写入多行,批量插入)在MyISAM下会快一些,但是UPDATE语句在InnoDB下则会更快一些,尤其是在并发量大的时候。
Index——索引
索引(Index)是帮助MySQL高效获取数据的数据结构。MyIASM和Innodb都使用了树这种数据结构做为索引,关于树我也曾经写过一篇文章树是一种伟大的数据结构,只是自己的理解,有兴趣的朋友可以去阅读。下面我接着讲这两种引擎使用的索引结构,讲到这里,首先应该谈一下B-Tree和B+Tree。
B-Tree和B+Tree
B+Tree是B-Tree的变种,那么我就先讲B-Tree吧,相信大家都知道红黑树,这是我前段时间学《算法》一书时,实现的一颗红黑树,大家可以参考。其实红黑树类似2,3-查找树,这种树既有2叉结点又有3叉结点。B-Tree也与之类似,它的每个结点做多可以有d个分支(叉),d称为B-Tree的度,如下图所示,它的每个结点可以有4个元素,5个分支,于是它的度为5。B-Tree中的元素是有序的,比如图中元素7左边的指针指向的结点中的元素都小于7,而元素7和16之间的指针指向的结点中的元素都处于7和16之间,正是满足这样的关系,才能高效的查找:首先从根节点进行二分查找,找到就返回对应的值,否则就进入相应的区间结点递归的查找,直到找到对应的元素或找到null指针,找到null指针则表示查找失败。这个查找是十分高效的,其时间复杂度为O(logN)(以d为底,当d很大时,树的高度就很低),因为每次检索最多只需要检索树高h个结点。
接下来就该讲B+Tree了,它是B-Tree的变种,如下面两张图所示:
MyISAM引擎的索引结构为B+Tree,其中B+Tree的数据域存储的内容为实际数据的地址,也就是说它的索引和实际的数据是分开的,只不过是用索引指向了实际的数据,这种索引就是所谓的非聚集索引。
Innodb引擎的索引结构
因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。
并且和MyISAM不同,InnoDB的辅助索引数据域存储的也是相应记录主键的值而不是地址,所以当以辅助索引查找时,会先根据辅助索引找到主键,再根据主键索引找到实际的数据。所以Innodb不建议使用过长的主键,否则会使辅助索引变得过大。建议使用自增的字段作为主键,这样B+Tree的每一个结点都会被顺序的填满,而不会频繁的分裂调整,会有效的提升插入数据的效率。
2 Mysql的存储引擎和索引
可以说数据库必须有索引,没有索引则检索过程变成了顺序查找,O(n)的时间复杂度几乎是不能忍受的。我们非常容易想象出一个只有单关键字组成的表如何使用B+树进行索引,只要将关键字存储到树的节点即可。当数据库一条记录里包含多个字段时,一棵B+树就只能存储主键,如果检索的是非主键字段,则主键索引失去作用,又变成顺序查找了。这时应该在第二个要检索的列上建立第二套索引。 这个索引由独立的B+树来组织。有两种常见的方法可以解决多个B+树访问同一套表数据的问题,一种叫做聚簇索引(clustered index ),一种叫做非聚簇索引(secondary index)。这两个名字虽然都叫做索引,但这并不是一种单独的索引类型,而是一种数据存储方式。对于聚簇索引存储来说,行数据和主键B+树存储在一起,辅助键B+树只存储辅助键和主键,主键和非主键B+树几乎是两种类型的树。对于非聚簇索引存储来说,主键B+树在叶子节点存储指向真正数据行的指针,而非主键。
InnoDB使用的是聚簇索引,将主键组织到一棵B+树中,而行数据就储存在叶子节点上,若使用"where id = 14"这样的条件查找主键,则按照B+树的检索算法即可查找到对应的叶节点,之后获得行数据。若对Name列进行条件搜索,则需要两个步骤:第一步在辅助索引B+树中检索Name,到达其叶子节点获取对应的主键。第二步使用主键在主索引B+树种再执行一次B+树检索操作,最终到达叶子节点即可获取整行数据。
MyISM使用的是非聚簇索引,非聚簇索引的两棵B+树看上去没什么不同,节点的结构完全一致只是存储的内容不同而已,主键索引B+树的节点存储了主键,辅助键索引B+树存储了辅助键。表数据存储在独立的地方,这两颗B+树的叶子节点都使用一个地址指向真正的表数据,对于表数据来说,这两个键没有任何差别。由于索引树是独立的,通过辅助键检索无需访问主键的索引树。
为了更形象说明这两种索引的区别,我们假想一个表如下图存储了4行数据。其中Id作为主索引,Name作为辅助索引。图示清晰的显示了聚簇索引和非聚簇索引的差异。
我们重点关注聚簇索引,看上去聚簇索引的效率明显要低于非聚簇索引,因为每次使用辅助索引检索都要经过两次B+树查找,这不是多此一举吗?聚簇索引的优势在哪?
1 由于行数据和叶子节点存储在一起,这样主键和行数据是一起被载入内存的,找到叶子节点就可以立刻将行数据返回了,如果按照主键Id来组织数据,获得数据更快。
2 辅助索引使用主键作为"指针" 而不是使用地址值作为指针的好处是,减少了当出现行移动或者数据页分裂时辅助索引的维护工作,使用主键值当作指针会让辅助索引占用更多的空间,换来的好处是InnoDB在移动行时无须更新辅助索引中的这个"指针"。也就是说行的位置(实现中通过16K的Page来定位,后面会涉及)会随着数据库里数据的修改而发生变化(前面的B+树节点分裂以及Page的分裂),使用聚簇索引就可以保证不管这个主键B+树的节点如何变化,辅助索引树都不受影响。
3 Page结构
如果说前面的内容偏向于解释原理,那后面就开始涉及具体实现了。
理解InnoDB的实现不得不提Page结构,Page是整个InnoDB存储的最基本构件,也是InnoDB磁盘管理的最小单位,与数据库相关的所有内容都存储在这种Page结构里。Page分为几种类型,常见的页类型有数据页(B-tree Node)Undo页(Undo Log Page)系统页(System Page) 事务数据页(Transaction System Page)等。单个Page的大小是16K(编译宏UNIV_PAGE_SIZE控制),每个Page使用一个32位的int值来唯一标识,这也正好对应InnoDB最大64TB的存储容量(16Kib * 2^32 = 64Tib)。一个Page的基本结构如下图所示:
每个Page都有通用的头和尾,但是中部的内容根据Page的类型不同而发生变化。Page的头部里有我们关心的一些数据,下图把Page的头部详细信息显示出来:
我们重点关注和数据组织结构相关的字段:Page的头部保存了两个指针,分别指向前一个Page和后一个Page,头部还有Page的类型信息和用来唯一标识Page的编号。根据这两个指针我们很容易想象出Page链接起来就是一个双向链表的结构。
再看看Page的主体内容,我们主要关注行数据和索引的存储,他们都位于Page的User Records部分,User Records占据Page的大部分空间,User Records由一条一条的Record组成,每条记录代表索引树上的一个节点(非叶子节点和叶子节点)。在一个Page内部,单链表的头尾由固定内容的两条记录来表示,字符串形式的"Infimum"代表开头,"Supremum"代表结尾。这两个用来代表开头结尾的Record存储在System Records的段里,这个System Records和User Records是两个平行的段。InnoDB存在4种不同的Record,它们分别是1主键索引树非叶节点 2主键索引树叶子节点 3辅助键索引树非叶节点 4辅助键索引树叶子节点。这4种节点的Record格式有一些差异,但是它们都存储着Next指针指向下一个Record。后续我们会详细介绍这4种节点,现在只需要把Record当成一个存储了数据同时含有Next指针的单链表节点即可。
User Record在Page内以单链表的形式存在,最初数据是按照插入的先后顺序排列的,但是随着新数据的插入和旧数据的删除,数据物理顺序会变得混乱,但他们依然保持着逻辑上的先后顺序。
把User Record的组织形式和若干Page组合起来,就看到了稍微完整的形式。
现在看下如何定位一个Record:
1 通过根节点开始遍历一个索引的B+树,通过各层非叶子节点最终到达一个Page,这个Page里存放的都是叶子节点。
2 在Page内从"Infimum"节点开始遍历单链表(这种遍历往往会被优化),如果找到该键则成功返回。如果记录到达了"supremum",说明当前Page里没有合适的键,这时要借助Page的Next Page指针,跳转到下一个Page继续从"Infimum"开始逐个查找。
详细看下不同类型的Record里到底存储了什么数据,根据B+树节点的不同,User Record可以被分成四种格式,下图种按照颜色予以区分。
1 主索引树非叶节点(绿色)
1 子节点存储的主键里最小的值(Min Cluster Key on Child),这是B+树必须的,作用是在一个Page里定位到具体的记录的位置。
2 最小的值所在的Page的编号(Child Page Number),作用是定位Record。
2 主索引树叶子节点(黄色)
1 主键(Cluster Key Fields),B+树必须的,也是数据行的一部分
2 除去主键以外的所有列(Non-Key Fields),这是数据行的除去主键的其他所有列的集合。
这里的1和2两部分加起来就是一个完整的数据行。
3 辅助索引树非叶节点非(蓝色)
1 子节点里存储的辅助键值里的最小的值(Min Secondary-Key on Child),这是B+树必须的,作用是在一个Page里定位到具体的记录的位置。
2 主键值(Cluster Key Fields),非叶子节点为什么要存储主键呢?因为辅助索引是可以不唯一的,但是B+树要求键的值必须唯一,所以这里把辅助键的值和主键的值合并起来作为在B+树中的真正键值,保证了唯一性。但是这也导致在辅助索引B+树中非叶节点反而比叶子节点多了4个字节。(即下图中蓝色节点反而比红色多了4字节)
3 最小的值所在的Page的编号(Child Page Number),作用是定位Record。
4 辅助索引树叶子节点(红色)
1 辅助索引键值(Secondary Key Fields),这是B+树必须的。
2 主键值(Cluster Key Fields),用来在主索引树里再做一次B+树检索来找到整条记录。
下面是本篇最重要的部分了,结合B+树的结构和前面介绍的4种Record的内容,我们终于可以画出一幅全景图。由于辅助索引的B+树与主键索引有相似的结构,这里只画出了主键索引树的结构图,只包含了"主键非叶节点"和"主键叶子节点"两种节点,也就是上图的的绿色和黄色的部分。
把上图还原成下面这个更简洁的树形示意图,这就是B+树的一部分。注意Page和B+树节点之间并没有一一对应的关系,Page只是作为一个Record的保存容器,它存在的目的是便于对磁盘空间进行批量管理,上图中的编号为47的Page在树形结构上就被拆分成了两个独立节点。
至此本篇就算结束了,本篇只是对InnoDB索引相关的数据结构和实现进行了一些梳理总结,并未涉及到Mysql的实战经验。这主要是基于几点原因:
1 原理是基石,只有充分了解InnoDB索引的工作方式,我们才有能力高效的使用好它。
2 原理性知识特别适合使用图示,我个人非常喜欢这种表达方式。
3 关于InnoDB优化,在《高性能Mysql》里有更加全面的介绍,对优化Mysql感兴趣的同学完全可以自己获取相关知识,我自己的积累还未达到能分享这些内容的地步。
另:对InnoDB实现有更多兴趣的同学可以看看Jeremy Cole的博客(参考文献三篇文章的来源),这位老兄曾先后在Mysql,Yahoo,Twitter,Google从事数据库相关工作,他的文章非常棒!