
机器学习
文章平均质量分 91
wblgers1234
这个作者很懒,什么都没留下…
展开
-
卷积神经网络Step by Step(一)
卷积神经网络Step by Step(一)这第一篇博客先从理论的角度阐述卷积神经网络的原理,包括卷积特征提取、池化以及误差反向传播。博客的内容是根据对Stanford大学的“UFLDL Tutorial”进行学习,并结合自己的理解所成,欢迎拍砖。1. 用“卷积”进行特征提取利用自然图像中的统计特征不变性,我们可以对图像的某一部分进行特征学习,然后通过卷积处理的形式应用到图像的其他部分做特征激活(fe原创 2017-04-28 17:37:03 · 3477 阅读 · 0 评论 -
漫谈autoencoder:降噪自编码器/稀疏自编码器/栈式自编码器(含tensorflow实现)
在非监督学习中,最典型的一类神经网络莫过于autoencoder(自编码器),它的目的是基于输入的unlabeled数据X={x(1),x(2),x(3),...}X={x(1),x(2),x(3),...},通过训练得到数据的一个降维特征表达H={h(1),h(2),h(3),...}H={h(1),h(2),h(3),...}。原创 2018-08-11 20:45:14 · 63823 阅读 · 52 评论 -
OpenCV机器学习:Android上利用SVM实现手写体数字识别
这篇博客是之前那篇在win7上用OpenCV的SVM分类器做[MNIST手写数字识别](https://blog.csdn.net/wblgers1234/article/details/73477860)的后续。用MNIST数据集做SVM训练和测试的细节可以移步那篇博客进行了解。原创 2018-05-08 21:43:22 · 5937 阅读 · 6 评论 -
Python实现基于BIC的语音对话分割(二)
1. 语音多分割点检测在上一篇博客<Python实现基于BIC的语音对话分割(一)>中,我们介绍了基于BIC(贝叶斯信息准则)的语音分割问题,有一个假设是这段语音中只有一个分割点,即语音对应的特征服从下面的分布: 模型H1:x1...xi∼N(μ1,Σ1);xi+1...xN∼N(μ2,Σ2)模型H_1: x_1...x_i \sim \mathcal{N}(\mu_1,\Sigma_1) ;原创 2017-08-13 12:23:19 · 12768 阅读 · 29 评论 -
Python实现基于BIC的语音对话分割(一)
1. 贝叶斯信息准则在统计学里,处理模型选择问题时我们往往采用BIC进行判定,即贝叶斯信息准则。BIC是似然函数(likelihood function)加上一个惩罚项组成的,这个加上的惩罚项与模型拟合的参数有关,这样可以防止过拟合。一般来说,贝叶斯信息准测的定义如下所示: BIC=ln(n)k−2ln(L^)BIC = ln(n)k-2ln(\hat{L})原创 2017-07-23 22:40:10 · 13448 阅读 · 9 评论 -
卷积神经网络Step by Step(五)
来到卷积神经网络详解的最后一章,在前面四篇博客里,我们首先对CNN的整体框架进行讲解,然后结合代码对卷积层、池化处理、全连接网络层以及计算cost的前向传播,计算梯度值的反向传播都分别进行讲解。这一章,我们要把这些全部捏合起来,构建一个CNN神经网络,并在MNIST数据集上进行分类训练和测试。原创 2017-07-10 22:41:15 · 2844 阅读 · 0 评论 -
卷积神经网络Step by Step(四)
卷积神经网络Step by Step(四)系列的第一篇博客对卷积神经网络的几个重要概念进行总结,现在就从代码的角度对”卷积”,”池化”,”反向传播”进行详细的分析。代码是基于“UFLDL Tutorial”的excercise代码中的cnn部分实现的,系列博客的最后我会把代码的Github地址分享出来。原创 2017-06-15 11:28:08 · 2916 阅读 · 0 评论 -
卷积神经网络Step by Step(三)
卷积神经网络Step by Step(三) 系列的第一篇博客(一)对卷积神经网络的几个重要概念进行总结,现在就从代码的角度对”卷积”,”池化”,”反向传播”进行详细的分析。原创 2017-05-28 22:25:28 · 2452 阅读 · 0 评论 -
卷积神经网络Step by Step(二)
卷积神经网络Step by Step(二) 上一篇博客对卷积神经网络的几个重要概念进行总结,现在就从代码的角度对”卷积”,”池化”,”反向传播”进行详细的分析。代码是基于“UFLDL Tutorial”的excercise代码中的cnn部分实现的,系列博客的最后我会把代码的Github地址分享出来。“卷积”层卷积层的核心实现由函数cnnConvolve.m完成,输入参数中filterDim是指特征原创 2017-05-10 11:58:37 · 2593 阅读 · 0 评论 -
用Python实现一个简易的“听歌识曲”demo(一)
0. 背景 最近两年,“听歌识曲”这个应用在国内众多的音乐类APP火热上线,比如网易云音乐,QQ音乐。用户可以通过这个功能识别当前环境里正在播放的歌曲名字,听起来很酷。其实“听歌识曲”这个想法最早是由一家叫Shazam的国外公司提出的。 - 2008年,Shazam率先在ios和android上发布了APP,并且整合了iTunes/Amazon’s MP3 store歌曲购买服务; ...原创 2018-09-09 17:22:10 · 18442 阅读 · 33 评论