排序:假设含有n个记录的序列为{r1, r2, ……, rn},其相应的关键字分别为{k1, k2, ……, kn},需确定1,2,……, n的一种排列p1, p2……, pn,使其相应的关键字满足kp1<=kp2……<=kpn非递减(非递增)关系,即使得序列成为一个关键字有序的序列{rp1, rp2, ……, rpn},这样的操作就称为排序。
多个关键字排序最终都可以转化为单个关键字的排序。下面讨论的是单个关键字的排序。
排序的稳定性:假设ki=kj(1<=i<=n, 1<=j<=n, i != j),且在排序前的序列中ri领先于rj(即i<j)。如果排序后ri仍领先于rj,则称所用的排序方法是稳定的;反之,若可能使得排序后的序列中rj领先于ri,则称所用的排序方法是不稳定的。
内排序与外排序:
内排序是在排序整个过程中,待排序的所有记录全部被放置在内存中。
外排序是由于排序的记录个数太多,不能同时放置在内存,整个排序过程需要在内外存知己多次交换数据才能进行。
排序算法的性能主要受3个方面的影响:时间性能,辅助空间,算法的复杂性。
根据排序过程中借助的主要操作,内排序分为:
插入排序:直接插入排序、希尔排序
交换排序:冒泡排序、快速排序
选择排序:简单选择排序、堆排序
归并排序
按照算法的复杂度分为两大类,冒泡排序,简单选择排序和直接插入排序属于简单算法,,而希尔排序,堆排序,归并排序,快速排序属于改进算法。
排序用到的结构和函数:
先提供一个用于排序的顺序表结构:
#define MAXSIZE 10 //用于要排序数组个数最大值,可根据需要修改
typedef struct
{
int r[MAXSIZE + 1]; //用于存储要排序数组,r[0]用作哨兵或临时变量
int length; //用于记录顺序表的长度
} SqList;
由于排序最最常用的操作就是数组两元素的交换:
//交换L中数组r的下标为i和j的值
void swap(SqList *L, int i, int j)
{
int temp = L->r[i];
L->r[i] = L->r[j];
L->r[j] = temp;
}
7种算法的对比
排序方法 | 平均情况 | 最好情况 | 最坏情况 | 辅助空间 | 稳定性 |
冒泡排序 | O(nxn) | O(n) | O(nxn) | O(1) | 稳定 |
简单选择排序 | O(nxn) | O(nxn) | O(nxn) | O(1) | 稳定 |
直接插入排序 | O(nxn) | O(n) | O(nxn) | O(1) | 稳定 |
希尔排序 | O(nlogn)~O(nxn) | O(n1.3) | O(nxn) | O(1) | 不稳定 |
堆排序 | O(nlogn) | O(nlogn) | O(nlogn) | O(1) | 不稳定 |
归并排序 | O(nlogn) | O(nlogn) | O(nlogn) | O(n) | 稳定 |
快速排序 | O(nlogn) | O(nlogn) | O(nxn) | O(logn)~O(n) | 不稳定 |