基本数据类型
Python3 中有六个标准的数据类型:
可变类型与不可变类型
不可变类型
不可变数据类型在声明时候也会开辟一块内存,不能改变这个数据的值。当改变赋值时,会重新开辟一块内存空间。
不可变数据有数字、字符串和元组。
Python 的六个标准数据类型中:
String(字符串)类型
Python中的字符串用半角的单引号或双引号括起来,获取字符串的一部分的操作也称为切片,截取格式为: 字符串变量[头下标:尾下标]
访问方法:正序访问时,可以获取到头下标到尾下标减1位置的字符。也可以逆序读取,最后一个字符下标为-1。
栅栏式位置:Python字符串的首字母下标为0,可以认为字符串位置与该位置上的数值交错出现,形成“栅栏”式。
由于字符串是不可变类型,所以向字符串某位置赋值会导致错误。
字符串赋值。
word = 'Python'
print(word[0], word[5])
print(word[-1], word[-6])
如果继续添加一行语句:
word[0] = Q'
由于无法修改 word字符串,因此会导致错误:“TypeError: 'str' object does not support item assignment”。
如果需要修改字符串的内容,可以使用重新赋值语句,如下:
word = 'Qython'
即生成一个新的word变量。
List(列表)类型
在实际应用中,经常需要对列表中的数据项进行遍历(也称为迭代)。Python中常用的列表迭代方法有三种:
Tuple(元组)类型
Dictionary(字典)
d = {key1 : value1, key2 : value2}
1.字典的访问
访问字典中的值需要使用字典的键值,这个键值用方括号括起来格式为:dt[‘key’]
2.修改字典
可以向字典添加、修改或删除键/值对
3.删除字典元素
删除一个字典用del命令, 清空字典用clear命令。
Set(集合)类型
Set(集合)由一列无序的、不重复的数据项组成。
1.创建set集合
创建集合可以使用大括号{}或者set()函数,但创建一个空集合必须用set()函数而不能用{},因为空的大括号{}创建的是空的字典。
建立一个由(v1,v2,…)组成的集合mySet,可以使用:mySet = {v1,v2,...}。
还可以使用List列表来创建集合,列表中的数据项直接作为集合的元素。生成的set集合和原List列表相比,数据项顺序有可能不同,并且会去除重复数据项。
2.集合添加、删除
为集合添加数据项有两种常用方法,是add()和update()。删除集合项的常用方法是remove()。
3.SET集合的遍历
集合中的元素也可以使用遍历进行访问,可以使用直接遍历,也可以使用enumerate索引进行遍历。不过,集合类型不支持range()方式的遍历。
4。Python集合操作符号
Python集合类型与数学中的集合操作类似,支持集合的交集、并集、差集、包含等数学操作。
打开与关闭文件
1.打开文件
打开文件的内置函数是open()函数,打开文件后会创建一个文件对象。对文件的访问通过这个文件对象进行。
语法:open(file_name [, access_mode][, buffering])
主要参数:
access_mode:文件的打开模式,读取、写入或追加等。可选参数,默认为r(只读模式)。写数据常用的是w’、‘a’ 模式, 分别表示改写和添加。
2.写入文件
3.关闭文件
关闭使用文件对象的close方法。
读取文件内容
文件对象中也提供了读取文件的方法,包括read()、readline()、readlines()等方法。其功能分别如下:
file.read([count]):默认读整个文件。如果设置了参数count,则读取count个字节,返回值为字符串。
file.readline():从当前位置开始,读取文件中的一行,返回值为字符串。
file.readlines():从当前位置开始读取文件的所有行,返回值为列表,每行为列表的一项。
有时读取的数据具有特殊字符或需要去掉的空格,如\n(换行)、\r(回车)、\t(制表符)、' '(空格)等,常用去空白符函数:
将数据写入文件
如果需要对文件写入数据,打开方式需要选择‘w’(写入)或者‘a’(追加) 模式,才能对文件内容进行改写或添加。写入文件可以使用Python提供的write方法。write方法的语法如下:
fileObject.write(byte)
其中,参数byte为待写入文件的字符串或字节。
Pandas存取文件
Pandas的核心功能是数据计算和处理,对外部文件读写数据也是Pandas功能的一部分。而且,可以使用Pandas在数据读写阶段对数据做一定的预处理,为接下来的数据分析做准备。
read_csv函数
功能:从文件、URL、文件新对象中加载带有分隔符的数据,默认分隔符是逗号。
read_csv的格式如下:
pd.read_csv(filepath_or_buffer,sep,header,encoding,index_col,columns…)
该函数有20多个参数,其主要参数如下:
NumPy存取文件
NumPy也可以非常方便地存取文件。
loadtxt()和savetxt()
基本格式:
np.loadtxt(fname, dtype=, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding='bytes')
np.savetxt(fname,X,fmt=’%.18e’,delimiter=’ ’,newline=’\n’,header=’’,footer=’’,comments=’#’,encoding=None)
常用参数解析——
usecols:选取数据的列。