最短路+拓扑排序+dp NOIP 2017 逛公园

17 篇文章 0 订阅
7 篇文章 0 订阅

让我们一起来%forever_shi神犇

题意:
给你一个 n n n个点 m m m条边的有向带权图,设 1 1 1号点到 n n n号点的最短路是 d i s dis dis,给你一个 k ( k &lt; = 50 ) k(k&lt;=50) k(k<=50),求所有 1 1 1 n n n的路径中长度不超过 d i s + k dis+k dis+k的数量。

题解:
显然我们要先处理出最短路,如果 k = 0 k=0 k=0,就是最短路计数了。要做计数,我们不难想到要在图上 d p dp dp。我们发现只要有一个边权全部是 0 0 0的环,那么我们的满足题意的路径就会有无数条,因为可以在环里转任意多圈之后再出来。那么我们要判断是否有无穷多解就是去找有没有全部是 0 0 0的环。

我们可以先处理出一个最短路图,最短路图的含义是由所有 d i s [ x ] + w [ x ] [ y ] = d i s [ y ] dis[x]+w[x][y]=dis[y] dis[x]+w[x][y]=dis[y]的边连成的图,最短路图的一个性质:如果边权都是正数,那么最短路图是一个DAG。DAG是可以拓扑排序的,如果最后每个点入度都是 0 0 0,就不存在权值全是 0 0 0的环,否则就是有权值全是 0 0 0的环,因为权值是 0 0 0的边一定不会让两点之间的最短路变长,所以其就一定会在最短路图上,而形成环的话是没法有其中某一个点的入度是 0 0 0,因此判断拓扑排序后的入度即可。

对图拓扑排序后根据图的拓扑序在DAG上 d p dp dp也是一个经典套路,这里我们就会采用这个套路。我们设 d p [ i ] [ j ] dp[i][j] dp[i][j]表示对于点 i i i d i s [ i ] dis[i] dis[i] j j j的路径数,那么对于路径 x − &gt; y x−&gt;y x>y,状态转移方程即为: d p [ y ] [ j + w ( x , y ) − ( d i s [ y ] − d i s [ x ] ) ] + = d p [ x ] [ j ] dp[y][j+w(x,y)−(dis[y]−dis[x])]+=dp[x][j] dp[y][j+w(x,y)(dis[y]dis[x])]+=dp[x][j]

那么我们枚举 j j j,然后按照拓扑序枚举 x x x,再枚举从 x x x出发的所有边,进行 d p dp dp。注意外层是枚举 j j j,因为在 d p dp dp的过程中如果外层枚举 x x x的话DAG上是没有环的,但是这里的边是枚举原图的边,所以可能之后会有环再回到 x x x,得到答案就是错误的了。还有就是这个 d p dp dp看似枚举的层数很多,但是其实复杂度并不高,因为所有边都只会被枚举到一次,所有点都只会被枚举 k + 1 ( 0 到 k ) k+1(0到k) k+1(0k)次,所以总的复杂度是 O ( n ∗ k ) O(n∗k) O(nk)的。

最后答案就是 ∑ i = 0 k d p [ n ] [ i ] 了 \sum^k_{i=0}dp[n][i]了 i=0kdp[n][i]

(吸氧苟过去QAQ)

#include<bits/stdc++.h>
#define ll long long
#define rint register int
using namespace std;
const int maxn=201000;
struct node
{
    int next,to,dis,from;
}e[maxn],a[maxn];
int head[maxn],head1[maxn],num,num1,i;
int dis[maxn],n,m,T,K,p,rd[maxn],numm[maxn];
int que[maxn],ji,u,v,d;
ll dp[200200][55],ans;
bool book[maxn];
priority_queue<pair<int,int> > q;
int read()
{
    int x=0,y=1;
    char c;
    c=getchar();
    while((c<'0'||c>'9')&&c!='0')
    c=getchar();
    if(c=='-')
    {
        y=-1;
        c=getchar();
    }
    while(c>='0'&&c<='9')
    {
        x=(x<<1)+(x<<3)+c-'0';
        c=getchar();
    }
    return x*y;
}
void add(int from,int to,int dis)
{
    e[++num].next=head[from];
    e[num].to=to;
    e[num].from=from;
    e[num].dis=dis;
    head[from]=num;
}
void add1(int from,int to,int dis)
{
    a[++num1].next=head1[from];
    a[num1].to=to;
    a[num1].dis=dis;
    head1[from]=num1;
}
void dij(int s)
{
    for(rint i=1;i<=n;++i)
        dis[i]=999999999;
    dis[s]=0;
    q.push(make_pair(0,s));
    while(!q.empty())
    {
        int x=q.top().second;
        q.pop();
        if(book[x])
            continue;
        book[x]=1;
        for(rint i=head[x];i;i=e[i].next)
        {
            int v=e[i].to;
            if(dis[v]>dis[x]+e[i].dis)
            {
                dis[v]=dis[x]+e[i].dis;
                q.push(make_pair(-dis[v],v));
            }
        }
    }
}
void topsort()
{
    int h=1,t=0;
    for(rint i=1;i<=n;++i)
        if(!rd[i])
            que[++t]=i;
    while(h<=t)
    {
        int x=que[h];
        numm[++ji]=x;
        for(rint i=head1[x];i;i=a[i].next)
        {
            int v=a[i].to;
            rd[v]--;
            if(!rd[v])
                que[++t]=v;
        }
        h++;
    }
}
int main()
{
    cin>>T;
    while(T--)
    {
        memset(book,0,sizeof(book));
        memset(head,0,sizeof(head));
        memset(head1,0,sizeof(head1));
        memset(a,0,sizeof(a));
        memset(e,0,sizeof(e));
        memset(rd,0,sizeof(rd));
        memset(dp,0,sizeof(dp));
        memset(numm,0,sizeof(numm));
        memset(que,0,sizeof(que));
        num=0,num1=0,ji=0,ans=0;
        bool flag=0;
        scanf("%d%d%d%d",&n,&m,&K,&p);
        int u,v,d;
        for(rint i=1;i<=m;++i)
        {
            u=read();
            v=read();
            d=read();
            add(u,v,d);
        }
        dij(1);
        for(rint i=1;i<=num;++i)
        {
            if(dis[e[i].from]+e[i].dis==dis[e[i].to])
            {
                add1(e[i].from,e[i].to,e[i].dis);
                rd[e[i].to]++;
            }	
        }
        topsort();
        for(rint i=1;i<=n;++i)
            if(rd[i])
            {
                flag=1;
                break;
            }
        if(flag)
        {
            printf("-1\n");
            continue;
        }
        dp[1][0]=1;
        for(rint k=0;k<=K;++k)
            for(rint i=1;i<=n;++i)
            {
                int x=numm[i];
                for(rint j=head[x];j;j=e[j].next)
                {
                    int v=e[j].to;
                    int len=k+e[j].dis-(dis[v]-dis[x]);
                    if(len<=K)
                        dp[v][len]=(dp[x][k]+dp[v][len])%p;
                }
            }
        for(rint i=0;i<=K;++i)
            ans=(ans%p+dp[n][i]%p)%p;
        printf("%d\n",ans);
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值