这是上一篇文章的优化版本,相较于一条一条的执行sql语句,本文中,将excel中所有的数据先写到list列表中
在通过函数
cursor.executemany(sql, list)
一次性写入到数据库中
import pymysql
import xlrd
'''
连接数据库
args:db_name(数据库名称)
returns:db
'''
def mysql_link(de_name):
try:
db = pymysql.connect(host="127.0.0.1", user="root",
passwd="XXX",
db=de_name,
charset='utf8')
return db
except:
print("could not connect to mysql server")
'''
读取excel函数
args:excel_file(excel文件,目录在py文件同目录)
returns:book
'''
def open_excel(excel_file):
try:
book = xlrd.open_workbook(excel_file) #文件名,把文件与py文件放在同一目录下
return book
except:
print("open excel file failed!")
'''
执行插入操作
args:db_name(数据库名称)
table_name(表名称)
excel_file(excel文件名,把文件与py文件放在同一目录下)
'''
def store_to(db_name,table_name,excel_file):
db = mysql_link(db_name) # 打开数据库连接
cursor = db.cursor() # 使用 cursor() 方法创建一个游标对象 cursor
book = open_excel(excel_file) # 打开excel文件
sheets = book.sheet_names() # 获取所有sheet表名
for sheet in sheets:
sh = book.sheet_by_name(sheet) # 打开每一张表
row_num = sh.nrows
print(row_num)
list = [] # 定义列表用来存放数据
for i in range(1, row_num): # 第一行是标题名,对应表中的字段名所以应该从第二行开始,计算机以0开始计数,所以值是1
row_data = sh.row_values(i) # 按行获取excel的值
value = (row_data[0], row_data[1],row_data[2],row_data[3],row_data[4],row_data[5],\
row_data[6],row_data[7],row_data[8],row_data[9],row_data[10],row_data[11],row_data[12],row_data[13],row_data[14])
list.append(value) # 将数据暂存在列表
# print(i)
sql = "INSERT INTO "+ table_name + " ( bj_shijian,bjr_xingbie,anfa_didian,\
zb_x,zb_y,bj_chongfu,jiejing_lb_name,baojing_lb_name,baojing_lx_name,baojing_lx_xl_name,\
guanxia_qy_name,guanxian_dw_name,anfa_qulu,anfa_xiaoqu,chujing_dw_name)VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"
cursor.executemany(sql, list) # 执行sql语句
db.commit() # 提交
list.clear() # 清空list
print("worksheets: " + sheet + " has been inserted " + str(row_num) + " datas!")
cursor.close() # 关闭连接
db.close()
if __name__ == '__main__':
store_to('demo','demo_yangben','qh.xlsx')
可以选择传入的数据库,及数据库表名,excel文件名(excel文件和py文件同目录,否则加上路径)
每一万条写入一次
import pymysql
import xlrd
import sys
'''
连接数据库
args:db_name(数据库名称)
returns:db
'''
def mysql_link(de_name):
try:
db = pymysql.connect(host="127.0.0.1", user="root",
passwd="a12345",
db=de_name,
charset='utf8')
return db
except:
print("could not connect to mysql server")
'''
读取excel函数
args:excel_file(excel文件,目录在py文件同目录)
returns:book
'''
def open_excel(excel_file):
try:
book = xlrd.open_workbook(excel_file) # 文件名,把文件与py文件放在同一目录下
print(sys.getsizeof(book))
return book
except:
print("open excel file failed!")
'''
执行插入操作
args:db_name(数据库名称)
table_name(表名称)
excel_file(excel文件名,把文件与py文件放在同一目录下)
'''
def store_to(db_name, table_name, excel_file):
db = mysql_link(db_name) # 打开数据库连接
cursor = db.cursor() # 使用 cursor() 方法创建一个游标对象 cursor
book = open_excel(excel_file) # 打开excel文件
sheets = book.sheet_names() # 获取所有sheet表名
for sheet in sheets:
sh = book.sheet_by_name(sheet) # 打开每一张表
row_num = sh.nrows
print(row_num)
list = [] # 定义列表用来存放数据
num = 0 # 用来控制每次插入的数量
for i in range(1, row_num): # 第一行是标题名,对应表中的字段名所以应该从第二行开始,计算机以0开始计数,所以值是1
row_data = sh.row_values(i) # 按行获取excel的值
value = (row_data[0], row_data[1], row_data[2], row_data[3], row_data[4], row_data[5], \
row_data[6], row_data[7], row_data[8], row_data[9], row_data[10], row_data[11], row_data[12],
row_data[13], row_data[14])
list.append(value) # 将数据暂存在列表
num += 1
if( num>= 10000 ): # 每一万条数据执行一次插入
print(sys.getsizeof(list))
sql = "INSERT INTO " + table_name + " (time, xingbie, afdd, xzb, yzb, cfbj, jjlbmc, \
bjlbmc, bjlxmc, bjlxxlmc, gxqymc,gxdwmc, afql, afxqxx, cjdwmc)\
VALUES(%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)"
cursor.executemany(sql, list) # 执行sql语句
num = 0 # 计数归零
list.clear() # 清空list
print("worksheets: " + sheet + " has been inserted 10000 datas!")
print("worksheets: " + sheet + " has been inserted " + str(row_num) + " datas!")
db.commit() # 提交
cursor.close() # 关闭连接
db.close()
if __name__ == '__main__':
store_to('demo', 'demo_yangben', 'qh.xlsx')
sys.getsizeof()方法监测内存占用
原文链接:https://blog.csdn.net/myli_binbin/article/details/84402238