PyTorch实现图卷积网络(GCN)

本文介绍了如何使用PyTorch实现图卷积网络(GCN),并展示了其在节点分类任务上的应用。通过定义GCN模型结构,包括图卷积层,利用Cora数据集进行训练和评估,最终得出模型在测试集上的准确率,以此体现GCN在处理图数据上的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图卷积网络(Graph Convolutional Network,GCN)是一种用于处理图数据的深度学习模型。它在许多图相关的任务中表现出色,如节点分类、链接预测和图生成等。在本篇文章中,我们将使用PyTorch实现GCN,并展示其在节点分类任务上的应用。

首先,我们需要导入所需的库和模块。我们将使用PyTorch作为深度学习框架,并使用NetworkX库来处理图数据。

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值