推荐安装的插件
5. Bracket Pair Colorizer (括号高亮)
10. 、Python Test Explorer for Visual Studio Code
1.Python插件(直接搜索Python下载安装)
Python
插件的全称是Python extension for Visual Studio Code
,它是一个 Visual Studio Code 扩展,具有对 Python 语言的丰富支持(对于该语言的所有受支持版本:> = 3.6),包括诸如 IntelliSense,linting,调试,代码导航,代码格式,Jupyter Notebook 支持,重构,变量之类的功能资源管理器,测试资源管理器,代码段等等
2.
Pylance
(代码补全)在 VS Code 插件市场中有多个代码补齐的工具,这里还是推荐
Pylance
。
3.自动格式化代码(pip install yapf)
Yapf 是谷歌开源的一个用于格式化 Python 代码的工具,可以一键美化代码。支持两种规范:
PEP8
和Google Style
。在 VS Code 中使用
yapf
需要先安装该工具,步骤如下:step 1: 打开终端,输入 "pip install yapf", 安装
在终端安装yapfyapf
,step 2: 在设置中设置使用
yapf
,具体设置过程如下:在 VS Code 左下角点击设置按钮,选择 “Settings”,如下:
在下面界面的右上角点击箭头所示,转到
settings.json
,
在
settings.json
里进行设置 "python.formatting.provider": "yapf", 图示如下:
step 3: 完成上述设置后,就可以对代码格式进行自动格式化了,快捷键是 Alt+Shift+F 。
4.
indent-rainbow
(高亮缩进)当代码缩进层次较多时,为了视觉上容易识别,一般希望可以多个缩进以不同颜色进行高亮显示, VS Code 中
indent-rainbow
插件可以实现这个功能。
5. Bracket Pair Colorizer (括号高亮)
当代码层次很多时,除了缩进的效果外,还有一个经常遇到的情况,就是各类括号,包括
()
、[]
、{}
;VS Code 中Bracket Pair Colorizer
插件可以列出来括号高亮的效果,尤其是多组嵌套括号。
6.
Better Comments
(注释高亮)在这里还推荐一个插件,这个插件用于程序语言编写时对注释的高亮。
咱们在编写程序的时候,总会涉及一些需要注意或者后续继续完成,或者需要提醒团队其他人员的注释内容,因此,有必要在代码中进行不同的说明,这个时候,在注释中进行不同的高亮,就会有很好的效果。
VS Code 扩展市场中,提供了
Better Comments
等类似的插件,来高亮注释。
7.Code Runner (代码运行和调试)
8.Python Snippets
Python Snippets
插件可以让我们的 Python 编程更加高效。它包含了大量的内置方法,以及string
、list
、sets
、tuple
、dictionary
、class
代码片段,并且还为每个代码段提供至少一个示例。
9.Python Docstring Generator
Python Docstring Generator
可以自动创建docstring,这真的为开发人员减少了的很大工作量。并且,生成的文档字符串遵循所有标准格式,包括docBlockr
、Numpy
、Sphinx
和PEP0257
10. 、Python Test Explorer for Visual Studio Code
这个插件通过使用
Test Explorer UI
运行Python Unittest
或Pytest
测试,对于功能测试非常方便。具体功能如下:
在VS Code的侧栏中的“测试”视图中显示“测试资源管理器”,其中包含所有检测到的测试、套件及其状态
在测试发现期间方便的错误报告
单元测试和Pytest调试
在资源管理器中选择测试后,显示失败的测试日志
支持多根工作区
支持Unittest和Pytest测试框架及其插件
11.Python Preview
Python Preview
可展现可视化调试的过程,并添加到我们的Python代码中。它将调试代码转换为带有动画和图形元素的交互式会话,以表示应用程序状态,对于代码调试非常直观。
12.Python Type Hint
Python Type Hint
提供针对Python的类型提示自动完成功能,以及针对内置类型、类和键入模块的完成项。
提供内置类型、估计类型和键入模块的类型提示完成项
估计正确的类型,提供完成项
可以在工作区中搜索Python文件以进行类型估计